Telia Sweden’s 5G Corridors Fuel Autonomous Vehicle Development

Sweden embarks on a transformative journey in autonomous vehicle development, establishing innovative 5G transport corridors in strategic locations, including Stockholm and Gothenburg. These corridors, pivotal in the NorthStar innovation program, are set to play a crucial role in testing and developing systems for connected and autonomous vehicles, such as self-driving electric trucks, thereby paving the way for smarter, sustainable, and secure transport solutions in society.

Introduction to Swedenโ€™s 5G Transport Corridors

In a bid to foster the development of autonomous and connected vehicles, Sweden is establishing 5G transport corridors in key regions, including Stockholm and Gothenburg. These corridors, situated on strategic routes like the E4 between Sรถdertรคlje and Nykรถping and the E18 between Danderyd and Kapellskรคr, are designed to facilitate the testing and development of automated transport systems, particularly focusing on self-driving electric trucks.

The Role of 5G Infrastructure in Autonomous Transport

Magnus Leonhardt, Head of Strategy and Innovation at Telia Swedenโ€™s B2B business, emphasizes the pivotal role of these corridors in the evolution of connected and autonomous vehicles. By enhancing the existing 5G network and integrating NorthStar’s innovation network along strategically chosen routes, Sweden is establishing transport corridors that enable vehicles to seamlessly switch between local dedicated mobile networks and the public 5G network, thereby fostering the development and testing of autonomous vehicle systems.

NorthStar Program and AstaZero Testing Environment


The NorthStar program, in conjunction with the AstaZero test environment outside Gothenburg, is developing scenarios to enable automated vehicles to traverse from one logistics hub to another through the 5G transport corridors. Owned by the RISE research institute, AstaZero provides a full-scale test environment for automated transport systems, and once the corridors are operational, testing can extend to public roads, allowing vehicles to navigate from ports to storage facilities via highways.

Sustainability and Emission Reduction through Automation

Authorities, including Jonas Eriksson, Head of Gothenburg Green City Zone at Business Region Gothenburg, anticipate that automation, facilitated by these 5G corridors, will significantly contribute to reducing transport emissions. Eriksson notes that โ€œelectrification, digitalization, and automationโ€ are pivotal in creating the emission-free transport system currently being developed in Gothenburg. The NorthStar initiative provides a unique platform to attract entities desiring to upscale their trials in a real-world environment, ensuring that transport solutions are not only smart but also environmentally friendly.

Future Implications and Challenges

The establishment of 5G transport corridors is a substantial step towards realizing autonomous and connected transport on a larger scale. However, the journey ahead involves navigating through challenges related to technology standardization, regulatory frameworks, and ensuring safety in autonomous transport. The success of these corridors could potentially reshape the transport landscape, not only in Sweden but also set a precedent for other countries exploring autonomous transport solutions.

Conclusion

Swedenโ€™s 5G transport corridors, particularly in Stockholm and Gothenburg, are poised to be a game-changer in the realm of autonomous vehicle development and testing. Through strategic alliances, such as the NorthStar innovation program, and a focus on sustainability, the country is not only advancing towards smarter transport solutions but is also taking significant strides towards realizing a more sustainable and connected future in transport.


Recent Content

OneLayer has partnered with Palo Alto Networks to integrate Zero Touch Provisioning (ZTP) with AI-driven Zero Trust security for private LTE/5G networks. This collaboration automates SIM provisioning, enhances device authentication, and simplifies firewall security management, enabling enterprises to deploy secure, scalable, and efficient private 5G networks.
The GSMA Foundry has launched Open-Telco LLM Benchmarks, an open-source AI evaluation framework designed to enhance telecom-specific large language models (LLMs). Supported by Hugging Face, The Linux Foundation, Deutsche Telekom, SK Telecom, and more, this initiative aims to improve AI efficiency, security, and compliance in 5G and 6G networks. Learn how this industry-wide benchmark is shaping the future of telecom AI innovation.
At MWC 2025, Qualcomm and Nokia Bell Labs demonstrated how AI-driven wireless networks can achieve multi-vendor interoperability without sharing proprietary data. Their AI-enhanced channel state feedback (CSF) technology optimizes 5G performance, improving network efficiency, signal strength, and reliability. With implications for 6G, Open RAN, and private 5G, this breakthrough is reshaping the future of AI-powered wireless communications.
Nokia introduces MX Context, an AI-powered sensor fusion solution that integrates multi-modal IoT data with private 5G networks for enhanced automation, efficiency, and worker safety. By eliminating data silos, MX Context provides real-time situational awareness, optimizes asset tracking, and enables low-code industrial automation. Learn how this AI-driven innovation is transforming Industry 4.0.
In 2025, the mobile industry is set to surpass 1 billion IoT connections while advancing 5G standalone, AI, quantum security, and mobile identity services. At MWC25 Barcelona, GSMA experts will discuss eSIM standardization, network APIs, private 5G, and AI-powered security. Discover how non-terrestrial networks (NTN) and post-quantum cryptography will shape telecom’s future.

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top