EnterpriseWeb and Fortinet Demonstrate Adaptive Security for 5G Edge Networks

The rise of edge networking and distributed applications exponentially increases the attack surface for both the enterprise and Telecom infrastructure. EnterpriseWeb and Fortinet have partnered on award-winning solutions that continuously observe, manage and secure 5G multi-access edge computing (MEC) end-to-end. Together, EnterpriseWeb and Fortinet are providing an intelligent SASE solution that provides end-to-end protection spanning network infrastructure (control plane), network traffic (user plane), and application security. To see the advanced capabilities in action, watch the replay of their latest demo in collaboration with Intel, Microsoft and KX - “Secure Dev-centric Networking with CAMARA APIs”.
EnterpriseWeb and Fortinet Demonstrate Adaptive Security for 5G Edge Networks

Adaptive Security for 5G Edge Networks

The rise of edge networking and distributed applications exponentially increases the attack surface for both the enterprise and Telecom infrastructure. EnterpriseWeb and Fortinet have partnered on award-winning solutions that continuously observe, manage and secure 5G multi-access edge computing (MEC) end-to-end. By Dave Duggal, founder and CEO of EnterpriseWeb and Ronen Shpirer, Director, Telco Solutions Marketing at Fortinet.


The Telecom industry is following in the footsteps of the Cloud providers, seeking to expose APIs to developers so they can design applications that can dynamically access and control network infrastructure. It opens the door to network-aware business applications that can dynamically scale resources up and down on-demand to ensure optimized performance, while maintaining efficiency. This is particularly attractive at the edge, where resources are constrained and local processing is limited.

Of course, with great power comes great responsibility. Exposing network data and controls to the Developer community opens the network to a new set of exploits. Integrated solutions from EnterpriseWeb and Fortinet close the gaps to protect both the business applications and the Telco infrastructure from exploits.

While there are emerging standards for developer-facing APIs (e.g., Linux Foundation CAMARA; GSMA Open Gateway; ETSI Network Exposure Function), there is no common model or shared library to support their implementations. This is a roadblock to adoption and leads to one-off implementations, which makes management, including security management, more difficult.

EnterpriseWeb Intelligent Orchestration

EnterpriseWeb offers an AI-enabled no-code platform. The cloud-native automation platform can deploy at the data center, in the cloud or at the edge. At only 50mb, the platform provides lightweight, low-latency, high-performance middleware capabilities in an edge-optimized form factor to keep processing local. EnterpriseWeb nodes can also connect in a peer-to-peer network to form a mesh network or “application fabric”.

EnterpriseWeb uses graph domain models to support intelligent orchestration. The graph efficiently provides the necessary context to optimize interactions. It acts as a single source of truth so developers can rapidly design smart, network-aware business apps that dynamically and continuously optimize latency, bandwidth and resources.

The platform provides a consistent developer experience, simplifies and automates IT tasks, and enables centralized management. As part of its role, the intelligent orchestrator continuously observes and manages all deployed services and the underlying infrastructure to ensure security, scalability and performance.

In the joint solution, Fortinet FortiWeb provides application and API security and Fortinet FortiGate provides Next Generation Firewall and 5G cybersecurity, securing all the endpoints and protecting user and control plane traffic.

Since application workloads and deployment environments vary, EnterpriseWeb dynamically configures FortiWeb and FortiGate so they are optimized for each use-case. Post deployment, EnterpriseWeb continues to monitor application activity and network usage and reconfigures Fortinet’s products to maintain security levels based on real-time network context. Static security configurations present an unacceptable risk.

Dynamic Security Configuration

  • EnterpriseWeb identifies assigned CP Subnet(s) via CNI Mapping (at time of initial deployment) and for all Function / Component Pods and Containers identifies virtual port assignments / IPs (translated from OpenShift APIs)
  • EnterpriseWeb identifies SDN level IPsec Tunnels (Point-to-Point) between components (from underlying CNI, Service Mesh, Network OS) and dynamically configures FortiGate to monitor and secure each / all such tunnels, adding and removing as the service evolves (scales, heals, etc.).
  • As security demands change, EnterpriseWeb scales FortiGate and/or adjusts networking to prioritize traffic to reflect evolving application behavior

Fortinet Adaptive Security

Fortinet’s market-leading security products also leverage AI to continuously optimize their own behavior. In addition to traditional negative and positive security models (attack signatures, IP address reputation, protocol validation, etc.), FortiWeb applies a second layer of machine learning-based analytics to detect and block malicious anomalies while minimizing false positives. Fortinet’s Adaptive Security ensures that protections are continuously responding to the volatile network and changing threats.

Together, EnterpriseWeb and Fortinet are providing an intelligent SASE solution that provides end-to-end protection spanning network infrastructure (control plane), network traffic (user plane), and application security. To see the advanced capabilities in action, watch the replay of their latest demo in collaboration with Intel, Microsoft and KX – “Secure Dev-centric Networking with CAMARA APIs”.


Recent Content

In Balancing Innovation and Regulation: Global Perspectives on Telecom Policy, top leaders including Jyotiraditya Scindia (India), Henna Virkkunen (European Commission), and Brendan Carr (U.S. FCC) explore how governments are aligning policy with innovation to future-proof their digital infrastructure. From India’s record-breaking 5G rollout and 6G ambitions, to Europe’s push for AI sovereignty and U.S. leadership in open-market connectivity, this piece outlines how nations can foster growth, security, and inclusion in a hyperconnected world.
In Driving Europe’s Digital Future, telecom leaders Margherita Della Valle (Vodafone), Christel Heydemann (Orange), and Tim Höttges (Deutsche Telekom) deliver a unified message: Europe must reform telecom regulation, invest in AI and infrastructure, and scale operations to remain globally competitive. From lagging 5G rollout to emerging AI-at-the-edge opportunities, they urge policymakers to embrace consolidation, cut red tape, and drive fair investment frameworks. Europe’s path to digital sovereignty hinges on bold leadership, collaborative policy, and future-ready infrastructure.
The future of manufacturing is intelligent, autonomous, and sustainable. Powered by private 5G networks, AI, and digital twins, smart factories are revolutionizing how goods are produced and maintained. From predictive maintenance to immersive virtual twins and AI-optimized energy systems, smart manufacturing is unlocking new levels of efficiency and innovation across industries—from ports and shipyards to agriculture and healthcare.
Smart mobility is reshaping how the world moves, powered by 5G, AI, and edge computing. From autonomous vehicles and real-time logistics to AI-driven drones and connected public transport, intelligent transportation systems are redefining urban mobility, logistics, and industrial automation. As global investment and collaboration grow, the transportation industry is transforming into a $11.1 trillion smart ecosystem focused on sustainability, efficiency, and connectivity.
FinTech, private 5G networks, and AI are converging to reshape digital finance across industries. From embedded payments and super apps to AI-driven credit scoring and secure M2M transactions, this $2 trillion opportunity is powered by mobile technology, cloud infrastructure, and regulatory evolution. Leaders must act fast to unlock new revenue, scale inclusion, and secure digital ecosystems.
The future of sports and entertainment is fan-first, immersive, and data-driven. Powered by D2C models, 5G networks, AI content creation, and super apps, industry leaders are reimagining fan experiences—from Bundesliga’s mobile strategy to Web2.5’s tokenized communities. The shift is not just technical but cultural, prioritizing personalization, monetization, and real-time interaction across every touchpoint.

Download Magazine

With Subscription
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Subscribe To Our Newsletter

Scroll to Top