DoD starts 3 new projects to advance 5G-to-NextG wireless technologies

The Department of Defense’s Innovate Beyond 5G (IB5G) Program recently kicked off three new projects that continue to advance DoD collaborative partnerships with industry and academia for 5G-to-NextG wireless technologies. 
AT&T and DoD demonstrates 5G-enabled smart warehouse
AT&T and DoD demonstrates 5G-enabled smart warehouse

The Department of Defense’s Innovate Beyond 5G (IB5G) Program recently kicked off three new projects that continue to advance DoD collaborative partnerships with industry and academia for 5G-to-NextG wireless technologies. 

Dr. Sumit Roy, IB5G Program Director said, “The DoD has a vital interest in advancing 5G-to-NextG wireless technologies and concept demonstrations. These efforts represent our continuing investments via public and private sector collaboration on research & development for critical Beyond 5G technology enablers necessary to realize high performance, secure, and resilient network operations for the future warfighter.”


Open6G is a new industry-university cooperative effort that aims to jumpstart 6G systems research on open radio access networks (Open RAN).  The effort will focus on Open RAN research and open source implementation of 5G protocol stack features to support emerging beyond/enhanced 5G applications.  Open6G will serve as the DoD’s hub for development, testing, and integration of trusted enhancements, supporting an industry and federal government NextG ecosystem pursuing 6G technology goals. Led by a $1.77 million anchor award from IB5G, the project is managed by Northeastern University’s Kostas Research Institute through a cooperative agreement with the Army Research Laboratory. The technical effort will be housed at Northeastern University’s Institute for Wireless Internet of Things.  

IB5G also started a new Spectrum Exchange Security and Scalability project with Zylinium Research. Spectrum-sharing technologies are becoming more critical as wireless networks face increasing user demand.  Zylinium Research developed Spectrum Exchange—a network service appliance that receives, schedules and allocates spectrum resources—in response to this need.  Zylinium Research recently demonstrated Spectrum Exchange for dynamic spectrum allocation on the Platform for Open Wireless Data-drive Experimental Research (POWDER) at the University of Utah, which is part of the Platforms for Advanced Wireless Research program funded by the National Science Foundation. This current effort will leverage blockchain in order to provide data persistence, scalability, and robustness to create a secure and distributed Spectrum Exchange.  Zylinium’s Spectrum Exchange research was funded $1.64 million by the Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E)), representing a prime example of government inter-agency and industry collaboration in the interest of advancing spectrum sharing techniques and machine-driven network capabilities.

IB5G, in collaboration with Nokia Bell Labs, also established the resilient, large-scale, Massive Multi-Input/Multi-Output (MIMO) from MHz to GHz project. Massive MIMO is a critical enabler for the warfighter due to its ability to increase resiliency and throughput for wireless tactical communications. This project was awarded $3.69 million by OUSD (R&E)/IB5G under an Open Broad Agency Announcement solicitation for Advanced Wireless Communications research. The effort will explore key technology components that enable scaling MIMO technology across different bands/bandwidths and DoD-oriented use cases. 

About USD(R&E) 

The Under Secretary of Defense for Research and Engineering (USD(R&E) is the Chief Technology Officer of the Department of Defense. The USD(R&E) champions research, science, technology, engineering, and innovation to maintain the United States military’s technological advantage. Learn more at www.cto.mil, follow us on Twitter @DoDCTO, or visit us on LinkedIn at https://www.linkedin.com/company/ousdre.


Recent Content

U.S. fixed wireless access (FWA) is on the rise, with over 11.5 million subscribers across T-Mobile, Verizon, and AT&T. Ookla Speedtest data reveals rising download speeds, with T-Mobile leading at 205 Mbps. Verizon manages performance via speed caps, while AT&T positions FWA as a transitional service. Latency and upload improvements further boost FWA’s appeal in 2024.
Telecom providers have spent over $300 billion since 2018 on 5G, fiber, and cloud-based infrastructure—but returns are shrinking. The missing link? Network observability. Without real-time visibility, telecoms can’t optimize performance, preempt outages, or respond to security threats effectively. This article explores why observability must become a core priority for both operators and regulators, especially as networks grow more dynamic, virtualized, and AI-driven.
As Open RAN moves from trials to large-scale adoption, telecom giants like NTT Docomo, AT&T, and TELUS share their real-world deployment strategies. From multivendor interoperability to automation and security, this article explores key operational insights, ecosystem collaborations, and future directions in Open RAN architecture.
5G and AI are transforming industries, but this convergence also brings complex security challenges. This article explores how Secure Access Service Edge (SASE), zero trust models, and solutions like Prisma SASE 5G are safeguarding enterprise networks. With real-world examples from telecom and manufacturing, learn how to secure 5G infrastructure for long-term digital success.
Connectivity convergence is redefining the Internet of Things by integrating legacy systems, cellular, Wi-Fi, LoRaWAN, BLE, and satellite networks. From agriculture to logistics, IoT ecosystems are evolving to prioritize seamless communication, modular hardware, and intelligent data handling with edge AI. This article explores how convergence is shifting the focus from hype to practical, scalable deployment—unlocking the true potential of IoT everywhere.
This articles explores how AI, quantum computing, and next-gen connectivity are shaping the future of innovation. From ethical AI and quantum-safe cryptography to 6G-enabled access to education and healthcare, these converging technologies are redefining what’s possible across industries. The key: inclusive, sustainable, and collaborative development.
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top