Bloomberg AI Researchers Mitigate Risks of “Unsafe” RAG LLMs and GenAI in Finance

There's immense pressure for companies in every industry to adopt AI, but not everyone has the in-house expertise, tools, or resources to understand where and how to deploy AI responsibly. Bloomberg hopes this taxonomy – when combined with red teaming and guardrail systems – helps to responsibly enable the financial industry to develop safe and reliable GenAI systems, be compliant with evolving regulatory standards and expectations, as well as strengthen trust among clients.
Bloomberg AI Researchers Mitigate Risks of "Unsafe" RAG LLMs and GenAI in Finance

Two new academic papers reflect Bloomberg’s commitment to transparent, trustworthy, and responsible AI


From discovering that retrieval augmented generation (RAG)-based large language models (LLMs) are less “safe” to introducing an AI content risk taxonomy meeting the unique needs of GenAI systems in financial services, researchers across Bloomberg’s AI Engineering group, Data AI group, and CTO Office aim to help organizations deploy more trustworthy solutions.

They have published two new academic papers that have significant implications for how organizations deploy GenAI systems more safely and responsibly, particularly in high-stakes domains like capital markets financial services.

In RAG LLMs are Not Safer: A Safety Analysis of Retrieval-Augmented Generation for Large Language Models,” Bloomberg researchers found that RAG, a widely-used technique that integrates context from external data sources to enhance the accuracy of LLMs, can actually make models less “safe” and their outputs less reliable.

To determine whether RAG-based LLMs are safer than their non-RAG counterparts, the authors used more than 5,000 harmful questions to assess the safety profiles of 11 popular LLMs, including Claude-3.5-Sonnet, Llama-3-8B, Gemma-7B, and GPT-4o. Comparing the resulting behaviors across 16 safety categories, the findings demonstrate that there were large increases in unsafe responses under the RAG setting. In particular, they discovered that even very “safe” models, which refused to answer nearly all harmful queries in the non-RAG setting, become more vulnerable in the RAG setting [see Figure 3 from the paper].

The change of risk profile from non-RAG to RAG is model dependent. (Figure 3, RAG LLMs are Not Safer: A Safety Analysis of Retrieval-Augmented Generation for Large Language Models, arXiv, 2025.)

This research clearly underscores the need for anyone using RAG LLMs to assess whether their models have any hidden layers of vulnerability and what additional safeguards they might need to add.

“This counterintuitive finding has far-reaching implications given how ubiquitously RAG is used in GenAI applications such as customer support agents and question-answering systems. The average Internet user interacts with RAG-based systems daily,” explained Dr. Amanda Stent, Bloomberg’s Head of AI Strategy & Research in the Office of the CTO. “AI practitioners need to be thoughtful about how to use RAG responsibly, and what guardrails are in place to ensure outputs are appropriate. Our research offers a framework for approaching that so others can evaluate their own solutions and identify any potential blind spots.”

In a related paper, “Understanding and Mitigating Risks of Generative AI in Financial Services,” Bloomberg’s researchers examined how GenAI is being used in capital markets financial services and found that existing general purpose safety taxonomies and guardrail systems fail to account for domain-specific risks.

To close this gap, they introduced a new AI content risk taxonomy that meets the needs of real-world GenAI systems for financial services. It goes beyond what may be addressed by general-purpose safety taxonomies and guardrail systems by addressing risks specific to the financial sector such as confidential disclosure, counterfactual narrative, financial services impartiality, and financial services misconduct.

“There have been strides in academic research addressing toxicity, bias, fairness, and related safety issues for GenAI applications for a broad consumer audience, but there has been significantly less focus on GenAI in industry applications, particularly in financial services,” said David Rabinowitz, Technical Product Manager for AI Guardrails at Bloomberg.

[See Table 1 from the paper]

The categories in Bloomberg’s AI content safety taxonomy for financial services. (Table 1, Understanding and Mitigating Risks of Generative AI in Financial Services, 2025.)

“There’s immense pressure for companies in every industry to adopt AI, but not everyone has the in-house expertise, tools, or resources to understand where and how to deploy AI responsibly,” said Dr. Sebastian Gehrmann, Bloomberg’s Head of Responsible AI. “Bloomberg hopes this taxonomy – when combined with red teaming and guardrail systems – helps to responsibly enable the financial industry to develop safe and reliable GenAI systems, be compliant with evolving regulatory standards and expectations, as well as strengthen trust among clients.”

The RAG safety paper will be presented at the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL 2025) in Albuquerque, New Mexico later this week. The AI risk taxonomy paper will be presented at the ACM Conference on Fairness, Accountability, and Transparency (FAccT) in Athens, Greece in June. For more details, read the Tech At Bloomberg blog post and both papers:

About AI at Bloomberg
Since 2009, Bloomberg has been building and using artificial intelligence (AI) in the finance domain – including machine learning (ML), natural language processing (NLP), information retrieval (IR), time-series analysis, and generative models – to help process and organize the ever-increasing volume of structured and unstructured financial information. With this technology, Bloomberg is developing new ways for financial professionals and business leaders to derive valuable intelligence and actionable insights from high-quality financial information and make more informed business decisions. Learn more about Bloomberg’s AI solutions at www.bloomberg.com/AIatBloomberg.

About Bloomberg
Bloomberg is a global leader in business and financial information, delivering trusted data, news, and insights that bring transparency, efficiency, and fairness to markets. The company helps connect influential communities across the global financial ecosystem via reliable technology solutions that enable our customers to make more informed decisions and foster better collaboration. For more information, visit Bloomberg.com/company or request a demo.


Recent Content

This article reflects on the misconceptions we have about AI, and discusses the fallacy of understanding AI’s underlying mechanisms, as it can demonstrate intelligent behavior despite our understanding. AI is developing its own form, capable of analyzing vast datasets, identifying patterns, and making connections that humans might take years to discover. And highlighting the power of partnership in AI projects, where both human and machine intelligence contribute their unique strengths. By combining human strengths with AI’s, we can create something greater than the sum of its parts.
The rising popularity of AI in the field of automation offers numerous lucrative opportunities for growth to the market players. Research Nester predicts that the automotive AI market size will reach USD 4 billion by the end of 2024. Furthermore, by 2037, the market is anticipated to garner USD 80 billion. In this blog, we will explore some of the latest trends in the market and other prospects.
AI is playing a key role in telecom security by strengthening threat detection, fraud prevention, and regulatory compliance. As 5G, IoT, and edge computing expand, telecom networks face cyber threats such as AI-specific attacks, network intrusions, and data breaches. AI-powered security solutions provide automated threat response, anomaly detection, and AI lifecycle protection, helping telecom providers maintain a secure and resilient network infrastructure.
Broadband leaders and utility companies, including CTA, NCTA, and PG&E, have extended the Voluntary Agreement for Small Network Equipment through 2028. The initiative has already improved home internet device energy efficiency by 89% since 2015, and new targets aim for an additional 10% reduction by 2026. With compliance from major ISPs and device manufacturers, this industry-led effort is making home broadband more sustainable while enhancing performance.
AI is transforming the relationship between telcos and hyperscalers like AWS, Google Cloud, and Microsoft Azure. With AI-driven automation, cloud-native networks, and edge computing, telecom operators are optimizing efficiency, reducing costs, and unlocking new revenue streams. As AI-powered innovations reshape 5G, cybersecurity, and digital services, these strategic partnerships are set to redefine the future of telecom.
Recent advancements in artificial intelligence training methodologies are challenging traditional assumptions about computational requirements and efficiency. Researchers have discovered an “Occam’s Razor” characteristic in neural network training, where models favor simpler solutions over complex ones, leading to superior generalization capabilities. This trend towards efficient training is expected to democratize AI development, reduce environmental impact, and lead to market restructuring, with a shift from hardware to software focus. The emergence of efficient training patterns and distributed training approaches is likely to have significant implications for companies like NVIDIA, which could face valuation adjustments despite strong fundamentals.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top