AMD and Rapt AI Partner to Optimize GPU Utilization for AI Workloads

AMD and Rapt AI are partnering to improve AI workload efficiency across AMD Instinct GPUs, including MI300X and MI350. By integrating Rapt AI's intelligent workload automation tools, the collaboration aims to optimize GPU performance, reduce costs, and streamline AI training and inference deployment. This partnership positions AMD as a stronger competitor to Nvidia in the high-performance AI GPU market while offering businesses better scalability and resource utilization.
Observe.AI Launches VoiceAI for Call Center Automation

Advanced Micro Devices Inc. (AMD) is enhancing the way businesses handle AI workloads through a strategic partnership with Rapt AI Inc. This collaboration focuses on improving the efficiency of AI operations on AMDs Instinct series graphics processing units (GPUs), a move that promises to bolster AI training and inference tasks across various industries.

How Rapt AI Enhances AMD Instinct GPU Performance for AI Workloads


Rapt AI introduces an AI-driven platform that automates workload management on high-performance GPUs. The partnership with AMD is aimed at optimizing GPU performance and scalability, which is essential for deploying AI applications more efficiently and at a reduced cost.

Managing large GPU clusters is a significant challenge for enterprises due to the complexity of AI workloads. Effective resource allocation is essential to avoid performance bottlenecks and ensure seamless operation of AI systems. Rapt AI’s solution intelligently manages and optimizes the use of AMD’s Instinct GPUs, including the MI300X, MI325X, and the upcoming MI350 models. These GPUs are positioned as competitors to Nvidias renowned H100, H200, and “Blackwell” AI accelerators.

Maximizing AI ROI: Lower Costs and Better GPU Usage with Rapt AI

The use of Rapt AIs automation tools allows businesses to maximize the performance of their AMD GPU investments. The software optimizes GPU resource utilization, which reduces the total cost of ownership for AI applications. Additionally, it simplifies the deployment of AI frameworks in both on-premise and cloud environments.

Rapt AI’s software reduces the time needed for testing and configuring different infrastructure setups. It automatically determines the most efficient workload distribution, even across diverse GPU clusters. This capability not only improves inference and training performance but also enhances the scalability of AI deployments, facilitating efficient auto-scaling based on application demands.

Future-Proof AI Infrastructure: Integration of Rapt AI with AMD GPUs

The integration of Rapt AIs software with AMDs Instinct GPUs is designed to provide seamless, immediate enhancements in performance. AMD and Rapt AI are committed to continuing their collaboration to explore further improvements in areas such as GPU scheduling and memory utilization.

Charlie Leeming, CEO of Rapt AI, shared his excitement about the partnership, highlighting the expected improvements in performance, cost-efficiency, and reduced time-to-value for customers utilizing this integrated approach.

The Broader Impact of the AMD and Rapt AI Partnership

This collaboration between AMD and Rapt AI is setting new benchmarks in AI infrastructure management. By optimizing GPU utilization and automating workload management, the partnership effectively addresses the challenges enterprises face in scaling and managing AI applications. This initiative not only promises improved performance and cost savings but also streamlines the deployment and scalability of AI technologies across different sectors.

As AI technology becomes increasingly integrated into business processes, the need for robust, efficient, and cost-effective AI infrastructure becomes more critical. AMDs strategic partnership with Rapt AI underscores the company’s commitment to delivering advanced solutions that meet the evolving needs of modern enterprises in maximizing the potential of AI technologies.

This collaboration will likely influence future trends in GPU utilization and AI application management, positioning AMD and Rapt AI at the forefront of technological advancements in AI infrastructure. As the partnership evolves, it will continue to drive innovations that cater to the dynamic demands of global industries looking to leverage AI for competitive advantage.

The synergy between AMDs hardware expertise and Rapt AIs innovative software solutions paves the way for transformative changes in how AI applications are deployed and managed, ensuring businesses can achieve greater efficiency and better results from their AI initiatives.


Recent Content

The future of sports and entertainment is fan-first, immersive, and data-driven. Powered by D2C models, 5G networks, AI content creation, and super apps, industry leaders are reimagining fan experiences—from Bundesliga’s mobile strategy to Web2.5’s tokenized communities. The shift is not just technical but cultural, prioritizing personalization, monetization, and real-time interaction across every touchpoint.
Satellite-mobile convergence is rapidly shifting from niche to mainstream, enabling global mobile coverage through Non-Terrestrial Networks (NTN). With direct-to-device (D2D) standards now supported by 3GPP Releases 17–19, traditional mobile phones can connect directly to satellites. This development has unlocked use cases in emergency response, smart agriculture, logistics, and IoT—paving the way for a future where 6G, edge AI, and multi-orbit architectures redefine connectivity. Learn how telecoms, enterprises, and regulators are navigating the path to a fully connected planet.
NVIDIA and Google Cloud are collaborating to bring secure, on-premises agentic AI to enterprises by integrating Google’s Gemini models with NVIDIA’s Blackwell platforms. Leveraging confidential computing and enhanced infrastructure like the GKE Inference Gateway and Triton Inference Server, the partnership ensures scalable AI deployment without compromising regulatory compliance or data sovereignty.
Nvidia has open-sourced the KAI Scheduler, a key component of the Run:ai platform, to improve AI and ML operations. This Kubernetes-native tool optimizes GPU and CPU usage, enhances resource management, and supports dynamic adjustments to meet fluctuating demands in AI projects.
At MWC Barcelona 2025, the O-RAN ALLIANCE showcased significant progress in AI-driven Radio Access Network (RAN) technologies and strategies for 6G standardization. Their approach focuses on interoperability, enhanced security measures, and fostering global collaboration for future mobile networks.
In 2025, the ASEAN telecommunications sector is set for significant changes, driven by AI integration, digital infrastructure expansion, and strategic market consolidations. These transformations aim to enhance operational efficiency and profitability within the region’s dynamic telecom landscape.

Download Magazine

With Subscription
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top