Merseburg University Launches 5G Campus Network with Deutsche Telekom

Merseburg University of Applied Sciences, in collaboration with Deutsche Telekom, has introduced the region's first 5G campus network. This high-performance, low-latency network supports advanced research in areas like autonomous driving, logistics, and AR. With exclusive access to industrial frequencies and 5G technology, the university is at the forefront of digital innovation in Saxony-Anhalt, driving regional transformation and fostering academic-industry collaboration.
Merseburg University Launches 5G Campus Network with Deutsche Telekom
Image Credit: Merseburg University and Deutsche Telekom

In collaboration with Deutsche Telekom, Merseburg University of Applied Sciences has launched the first 5G campus network in the region. This network aims to foster innovation, research, and the development of advanced digital technologies in the region. The project is part of Saxony-Anhalt’s broader investment strategy to boost digital infrastructure and drive regional structural transformation.

Overcoming Digital Infrastructure Challenges in Saxony-Anhalt


The region around Merseburg is undergoing significant economic and industrial changes. To support this transition, state-of-the-art digital infrastructure is necessary. Traditional mobile networks are not equipped to handle the specific demands of modern research institutions and industries. Low latency, high-speed data transmission, and secure communication are vital for innovation in fields like autonomous driving, logistics, and augmented reality (AR).

How Deutsche Telekom’s Private 5G Network Powers Innovation at Merseburg University

Deutsche Telekom, using 5G standalone (SA) technology, provided a custom 5G private network for the university. A total of 44 antennas were installed—32 indoor antennas for the Merseburg Innovation and Technology Center (MITZ) and 12 for the university, along with five outdoor antennas. The system utilizes industrial frequencies in the 3.7 to 3.8 GHz range, reserved exclusively for the university, ensuring secure and reliable service.

Real-World Applications: 5G Drone Demonstration at Merseburg Digital Days

The deployment of the 5G network at Merseburg University is not just theoretical. During the Merseburg Digital Days, attendees witnessed a live demonstration of a 5G-enabled drone operating within the network. This successful field test showed the network’s capacity for real-time, low-latency applications. Additionally, indoor 5G positioning technology was used for the first time in MITZ, enabling real-time location tracking of materials, essential for optimizing production and logistics processes.

Why Merseburg University Chose 5G Standalone for Its Campus Network

Merseburg University opted for Deutsche Telekom’s “Campus-Netz Private” solution, which is built on 5G standalone architecture. This technology offers significant advantages, including ultra-low latency and the ability to process data directly on-site, ensuring high security and performance. Ericsson’s solutions were integral to the network infrastructure, particularly for positioning technology, a first for indoor applications.

Key Advantages of Merseburg University’s Private 5G Network for Research and Industry

The private 5G network at Merseburg University provides many advantages:

  • High security: All data traffic stays within the local network, ensuring data integrity.
  • Maximum performance: The network is optimized for high-speed data and ultra-low latency.
  • Exclusive access: The university and MITZ benefit from industrial-grade frequencies, providing up to 100 MHz of bandwidth for research and commercial applications.

How Merseburg’s 5G Campus Network is Shaping the Future of Regional Innovation

The launch of this network positions Merseburg University as a hub for 5G research and innovation. It enables experiments in autonomous driving, real-time logistics, and even healthcare applications, all of which require the advanced capabilities of 5G technology. Moreover, it encourages collaboration between academia and industry, as local businesses can test and refine 5G applications.

Deutsche Telekom’s Role in Deploying Merseburg University’s 5G Network

Deutsche Telekom played a crucial role in the design and implementation of this 5G private network. As a trusted telecom leader, they provided the necessary infrastructure and technological expertise. Their involvement extended from network installation to live demonstrations and ongoing support, ensuring that the network operates at its best.

Ericsson’s Cutting-Edge Positioning Technology Boosts Merseburg’s 5G Capabilities

Ericsson, as a key technology partner, contributed its state-of-the-art positioning solution, which is critical for the efficiency of industrial applications such as warehouse management and production line optimization. Their solution is based on the latest 3GPP standards, ensuring the university has access to cutting-edge technology.

Merseburg University’s 5G Campus Network Now Fully Operational

The network is fully operational, with both the university and MITZ already using it for various research projects. The initial phase of deployment is complete, and further optimizations and use cases are expected as part of the university’s “MerInnoCampus” development strategy. The Merseburg Digital Days showcased the network’s potential and highlighted its impact on regional innovation.

The project started with a Europe-wide tender, and Deutsche Telekom was selected as the winning bidder. The network construction took several months, with the official launch happening during the 2023 Merseburg Digital Days. The 5G network is set to operate over a seven-year period, with ongoing updates and improvements as necessary.

Ministerial Support for Merseburg’s 5G Network and Its Regional Impact

Minister Dr. Lydia Hüskens, speaking at the launch event, emphasized that 5G will play a pivotal role in driving structural change in the region. She highlighted the network’s potential to attract businesses, improve quality of life, and support research and development. Additionally, Linus Schade, representing Deutsche Telekom, noted that this project builds on the company’s previous 5G successes in Merseburg, including the first-ever 5G phone call on their network.

The 5G campus network at Merseburg University represents a significant step forward for digital innovation in Saxony-Anhalt. By providing a secure and high-performance platform, it lays the foundation for future technological advancements and industry collaboration.


Recent Content

As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
ZTE and e& UAE have completed a successful Private 5G Network trial, showcasing high uplink speeds, multi-band adaptability, and ZTE’s NodeEngine Edge Computing platform. This trial enables rapid deployment, stronger enterprise connectivity, and practical use cases for smart industries, aligning with the UAE’s goal of becoming a digital innovation leader.
The City of Istres, France, partners with Ericsson, SPIE, and Unitel to deploy a cost-efficient Private 5G Network. This smart city blueprint reduces surveillance camera installation costs by over 80%, improves secure emergency communications, and leverages Edge Computing for AI-ready urban security. Istres sets a precedent for mid-sized European cities modernizing connectivity and resilience.
Spark and Air New Zealand have activated New Zealand’s first Private 5G Network for business operations at Auckland Airport’s logistics warehouse. Using Ericsson’s enterprise-grade 5G, the network powers a drone-robot system that automates stocktakes, keeps staff safer by removing the need for high-shelf manual scanning, and provides real-time inventory data to boost efficiency. This smart warehousing solution sets a new benchmark for airport logistics and supply chain innovation in New Zealand.
Starlink plans to enter India’s broadband market with a $10/month satellite internet service, aiming to reach 10 million users. Backed by SpaceX, the offering challenges local 5G and FWA providers like Jio and Airtel while targeting underserved rural regions. Regulatory hurdles, hardware costs, and network capacity may influence its success.
Deutsche Telekom, Orange, and the Linux Foundation outline their 2025 cloud-native telecom roadmap, highlighting Kubernetes-native workloads, AI integration, observability, and zero-trust security models. Learn how open-source tooling, GitOps automation, and cultural transformation are reshaping next-gen telco operations.
Whitepaper
How IoT is driving cellular and enterprise network convergence and creating new risks and attack vectors?...
OneLayer Logo
Whitepaper
The combined power of IoT and 5G technologies will empower utilities to accelerate existing digital transformation initiatives while also opening the door to innovation opportunities that were previously impossible. However, utilities must also balance the pressure to innovate quickly with their responsibility to ensure the security of critical infrastructure and...
OneLayer Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top