Samsung secures NTN modem technology for direct communication between smartphones and satellites

Samsung Electronic announced that it has secured standardized 5G non-terrestrial networks (NTN) modem technology for direct communication between smartphones and satellites, especially in remote areas. Samsung plans to integrate this technology into the company’s Exynos modem solutions, accelerating the commercialization of 5G satellite communications and paving the way for the 6G-driven Internet of Everything (IoE) era.
Samsung secures NTN modem technology for direct communication between smartphones and satellites

Samsung Electronics, a world leader in advanced semiconductor technology, announced that it has secured standardized 5G non-terrestrial networks (NTN) modem technology for direct communication between smartphones and satellites, especially in remote areas. Samsung plans to integrate this technology into the company’s Exynos modem solutions, accelerating the commercialization of 5G satellite communications and paving the way for the 6G-driven Internet of Everything (IoE) era.

 


Image Credit: Samsung

“This milestone builds on our rich legacy in wireless communications technologies, following the introduction of the industry’s first commercial 4G LTE modem in 2009 and the industry’s first 5G modem in 2018,” said Min Goo Kim, Executive Vice President of CP (Communication Processor) Development at Samsung Electronics. “Samsung aims to take the lead in advancing hybrid terrestrial-NTN communications ecosystems around the world in preparation for the arrival of 6G.”

NTN is a communications technology that uses satellites and other non-terrestrial vehicles to bring connectivity to regions that were previously unreachable by terrestrial networks, whether over mountains, across deserts or in the middle of the ocean. It will also be critical in assuring operability in disaster areas and powering future urban air mobility (UAM) such as unmanned aircraft and flying cars.

 

Image Credit: Samsung

By meeting the latest 5G NTN standards defined by the 3rd Generation Partnership Project (3GPP Release 17), Samsung’s NTN technology will help ensure interoperability and scalability among services offered by global telecom carriers, mobile device makers and chip companies.

For highly reliable NTN communication with low Earth orbit (LEO) satellites, Samsung has developed and simulated 5G NTN standard-based satellite technology using its Exynos Modem 5300 reference platform to accurately predict satellite locations and minimize frequency offsets caused by the Doppler shift. Based on this technology, Samsung’s future Exynos modems will support two-way text messaging as well as high-definition image and video sharing.

Additionally, Samsung plans to secure a standardized NB-IoT NTN technology for use in its next-generation modem platforms. With integrated satellite connectivity, Samsung’s NB-IoT solutions will eliminate the need for a separate high-power wireless antenna chip inside smartphones, providing mobile device makers with much greater design flexibility.


Recent Content

Private LTE and 5G networks enable utilities to achieve sustainability and ESG goals by supporting clean energy, climate resilience, safer field operations, and transparent ESG reporting. Discover how utilities are using private networks to lower emissions, integrate renewables, and protect communities.
As utilities expand private LTE and 5G networks, strong partner ecosystems and managed services help balance performance, compliance, and cost. Explore how orchestration, governance frameworks, and co-managed models enable utilities to scale smarter and faster.
As utility private networks scale beyond pilot deployments, success depends on more than connectivity. This blog explores how utilities are applying orchestration frameworks, secure governance models, and lifecycle management strategies to build scalable, resilient, and future-ready private LTE and 5G infrastructures, ensuring long-term performance, compliance, and adaptability.
Utilities are unlocking real-time intelligence and predictive maintenance by combining edge computing and AI with private LTE/5G networks. This blog explores how utilities process critical data locally to automate decisions, detect anomalies, optimize asset performance, and improve operational resilience—laying the foundation for the autonomous grid.
Utilities are implementing private LTE and 5G networks across diverse environments—from turbine halls and substations to national grid systems. This blog outlines the key deployment architectures (site-specific, regional, wide-area, and indoor) and spectrum strategies utilities are using to deliver secure, scalable, and purpose-built connectivity for modern energy operations.
The shift to private LTE and 5G in utilities is being driven by a convergence of urgent trends, from climate mandates and cyber threats to legacy infrastructure and labor shortages. This blog explores six key forces accelerating private network adoption and highlights why resilient, intelligent, and secure communications have become essential to utility transformation.
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top

Private Network Readiness Assessment

Run your readiness check now — for enterprises, operators, OEMs & SIs planning and delivering Private 5G solutions with confidence.