5G Network Slicing: Deutsche Telekom and Ericsson’s Secure Private Cloud Solution

Deutsche Telekom and Ericsson have developed a secure 5G network slicing that directly connects to a private cloud, addressing enterprise concerns over adopting edge use cases. The proof-of-concept has significant implications for the future of 5G technology, particularly around network slicing, with the potential to provide premium, revenue-generating services. However, security concerns persist, highlighting the need for careful management of network slices.
5G NETWORK SLICING: DEUTSCHE TELEKOM AND ERICSSONโ€™S SECURE PRIVATE CLOUD SOLUTION
Image Credit: DEUTSCHE TELEKOM

Deutsche Telekom, the leading German telecom company, and Ericsson, its supplier partner, have announced that they have developed a secure 5G network slicing that can directly link to a private cloud. This development aims to address the concerns of enterprises about implementing edge use cases supported by emerging 5G technology norms.


Network slicing is considered a crucial feature of a 5G SA deployment, enabling the operator to set up discrete virtual networks that function as independent networks, thus facilitating premium, revenue-earning services.

The proof-of-concept (PoC), named after the project, was executed on a 5G standalone (SA) testbed in Deutsche Telekom’s lab with an enterprise smartphone connected to a predetermined set of private cloud applications. Ericsson supplied the 5G core, the radio access network (RAN), and the complete orchestration.

The trial incorporated mobile device management (MDM) and user equipment route selection policy (URSP) to evaluate and validate an application-level device configuration. It also employed TM Forum-based APIs to assimilate third-party management interfaces that enable external management systems to integrate slice ordering and management.

The organizations confirmed that the validated service offers a unified management interface for “automated configuration, provisioning, and complete orchestration of the enterprise slicing service order” and “can be activated without the user requiring any additional setup on their enterprise devices.”

The companies stated, “Enterprise staff can subsequently access private cloud-based applications on their enterprise smartphone device via a secure network slice over the public network.” They further added, “The enterprise administrator can also utilize a range of analytics services in the integrated solution to monitor and analyze the use of the customized network slice.”

This latest PoC is based on prior collaborations between Deutsche Telekom and Ericsson, including a trial in mid-2021 that utilized Ericssonโ€™s 5G SA core and a Samsung smartphone to support a mobile gaming service.

The financial advantages of network slicing have long been emphasized by analyst firms, especially in the context of penetrating various market sectors.

ABI Research predicted as early as 2018 that 5G network slicing would generate “$66 billion in value for enterprise verticals including manufacturing, logistics, and transportation by 2026.” The research firm also recently highlighted that operators need to focus on 5G slice-as-a-service and other ‘value-added services’ crucial for monetization.

Abdul Rahman, associate VP at Deloitte, explained in a presentation at the last year’s RSA Conference that potential vulnerabilities exist, allowing attackers to exploit one network slice and potentially breaching a device operating in an adjacent network slice. These concerns have grown with the recent trend to open up network APIs further, enabling operators to monetize their 5G network investments better.

Rahman further explained the importance of identifying the location of an organizationโ€™s most valuable assets, termed “crown jewels,” within network slices. He emphasized that it’s crucial to know which hosts are in proximity to where these “crown jewels” are situated.


Recent Content

Web3 is redefining the telecom industry by introducing decentralized infrastructure, blockchain-based billing, smart contracts, NFTs, and digital identity. This article explores how telcos can evolve from connectivity providers to key players in Web3 ecosystemsโ€”offering programmable services, token economies, and secure, user-centric digital experiences.
As the telecom industry celebrates World Telecom Day 2025, the theme is clear: connectivity is not just infrastructureโ€”it is empowerment. It is what enables a student in a rural village to access world-class education, a farmer to monitor crops via smart sensors, or a doctor to conduct remote surgery with millisecond precision.
AT&T will acquire Lumenโ€™s consumer fiber business in a $5.75B deal to expand its broadband coverage to 60 million U.S. locations by 2030. The transaction gives AT&T access to 4M enabled locations, 1M subscribers, and new metro markets like Seattle and Phoenix. Meanwhile, Lumen refocuses on enterprise innovation and AI-first networking.
As 5G expands, reduced-capability (RedCap) and enhanced RedCap (eRedCap) IoT devices face pressure to transition from 4G. But adoption has lagged due to price and value challenges. This article explores why OEMs are holding back, the role of low-power DSP modem platforms like Cevaโ€™s, and how software-defined radio and flexibility are key to unlocking 5Gโ€™s potential in high-volume, low-bandwidth IoT applications.
Verizon joins the Buffalo Bills as a Founding Partner of Highmark Stadium, bringing 5G connectivity, sustainability-focused services, and smart venue technology to the teamโ€™s new home in Orchard Park. The partnership includes ownership of the DAS system, advanced operational tools, AR fan features, and exclusive Verizon customer activationsโ€”setting a new benchmark for connected sports venues by 2026.
Singtel launches 5G+, introducing nationwide network slicing for both consumers and enterprises, a global first. This upgrade brings faster speeds, lower latency, stronger indoor coverage, and real-time cyber protection to over 1.5 million users. Singtel 5G+ enhances mobile connectivity with the 700MHz spectrum, priority plans, and app-based slicing for business-critical apps, aligning with Singaporeโ€™s Smart Nation goals.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top