Reimagining the Radio Access Network: The Rise of AI-Native RAN

As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
Reimagining the Radio Access Network: The Rise of AI-Native RAN

From SON to AI-Native: A Decade of RAN Intelligence

AI’s journey in the RAN began with rule-based Self-Organizing Networks (SON) that offered automation of basic tasks such as neighbor list updates and interference mitigation. However, these early solutions were often vendor-specific and siloed. The arrival of 5G sparked a new era — one that demands adaptable, data-driven intelligence to manage dense networks, multiple spectrum layers, and ultra-low latency use cases.


Enter the AI-native RAN: an architectural approach where AI isn’t bolted on — it is embedded across the entire RAN stack. This includes intelligent beamforming, dynamic spectrum allocation, predictive maintenance, and even signal processing at the physical layer. Models continuously learn and adapt using massive datasets — a leap forward from static SON logic.

With 6G on the horizon, the convergence of Generative AI (GenAI), Foundation Models, and real-time network telemetry opens the door to autonomous networks that can self-configure, self-optimize, and self-heal.

Architectural Shift: Building Blocks of AI-Native RAN

To enable AI at scale, the traditional RAN architecture must evolve — from rigid, vendor-locked boxes to disaggregated, cloud-native, and open ecosystems. This includes:

  • Open RAN (O-RAN): By separating control and user planes and defining open interfaces (A1, E2, O1), O-RAN enables third-party AI applications to interface with the network. The introduction of the RAN Intelligent Controller (RIC) — split into Near-Real-Time (near-RT) and Non-Real-Time (non-RT) — is central to this architecture.
  • Cloudification: Virtualized RAN (vRAN) and Cloud RAN (C-RAN) models enable dynamic resource allocation and seamless deployment of AI modules, akin to DevOps in IT.
  • AI-Optimized Hardware: Transitioning from ASICs to general-purpose CPUs, GPUs, and AI accelerators allows RAN components to support both signal processing and ML inference workloads at the edge.
  • MLOps in Telecom: Building a robust AI pipeline — from data collection to model training and deployment — is critical. AI-native RANs must incorporate DevOps-style workflows for continuous learning and deployment of ML models

Open RAN and the Power of the RIC

The RIC is a game-changer, bringing programmable intelligence to the RAN via xApps (near-RT) and rApps (non-RT). Examples include:

  • A near-RT xApp optimizing handover decisions in real-time based on user mobility.
  • A non-RT rApp analyzing week-long trends to update cell configurations for improved coverage or energy savings.

By decoupling intelligence from infrastructure, RIC enables a vibrant innovation ecosystem — similar to an app store model — where operators can choose from a variety of AI solutions, reducing vendor lock-in and speeding up innovation.

AI Use Cases Across the RAN

AI is touching every part of the RAN lifecycle. Here are some of the most impactful applications:

1. AIOps for Network Automation

AI for IT operations (AIOps) is revolutionizing network management:

  • Fault Prediction & Self-Healing: Models detect anomalies and trigger proactive remediation.
  • Performance Optimization: Algorithms tune parameters like antenna tilt and power in real time.
  • Closed-Loop Automation: Monitoring, analysis, decision, and action cycles complete autonomously.

Operators like Rakuten Mobile run hyper-automated networks with minimal operational staff, showcasing what full AIOps maturity looks like.

2. Generative AI in RAN

GenAI models — especially large language models (LLMs) — are now being used for:

  • Natural language troubleshooting
  • Automated script generation
  • AI-powered documentation and chatbot support for field engineers

These models democratize access to network intelligence and enable rapid knowledge transfer.

3. AI for Spectrum & QoS Optimization

  • Dynamic Spectrum Sharing: AI allocates frequencies based on real-time demand.
  • Traffic Steering: Prioritizes resources based on application QoS (e.g., video vs. IoT).
  • Interference Management: AI learns optimal cell coordination strategies, reducing drops and latency.

4. Energy-Efficient RANs

AI helps operators meet sustainability targets:

  • Dynamic Power Scaling: Deactivating carriers or antennas during low usage periods.
  • AI-Powered Sleep Modes: Predicting usage patterns to save power without degrading QoS

The Road Ahead: AI as a Strategic Differentiator

Looking forward, the RAN could become more than just a transport layer — it could evolve into a distributed AI fabric. AI-native architectures will not only support real-time optimization but also serve as edge inference platforms for enterprise and IoT use cases.

The emergence of cross-industry alliances like the AI-RAN Alliance reflects the strategic convergence of telecom, cloud, and semiconductor players. No single vendor can deliver the full vision alone — collaboration is key.

Final Thoughts

AI-native RANs offer more than operational efficiency. They represent a foundational shift in how networks are built, operated, and monetized. For telcos, the challenge is to align technology, talent, and partnerships around a clear AI transformation roadmap.

The question is no longer if AI will change the RAN — it’s how fast you are willing to embrace it.


Recent Content

Generative AI has been disrupting every industry since its launch, and software development is no different. This technology has the ability to do things much faster and more accurately than humans, which is the driving force behind its rapid adoption by businesses around the globe. This article explores the seven ways of how generative AI is beneficial in Software development.
Web3 is redefining the telecom industry by introducing decentralized infrastructure, blockchain-based billing, smart contracts, NFTs, and digital identity. This article explores how telcos can evolve from connectivity providers to key players in Web3 ecosystems—offering programmable services, token economies, and secure, user-centric digital experiences.
AI is helping small businesses compete with the big guys in e-commerce, making it easier to offer personalized shopping, provide instant customer support, and streamline operations. From smart chatbots to inventory management and fraud detection, small businesses now have access to powerful tools that boost growth without breaking the bank. In this article, we explore how AI is leveling the playing field and share practical tips for small businesses to stay competitive in today’s digital world.
As the telecom industry celebrates World Telecom Day 2025, the theme is clear: connectivity is not just infrastructure—it is empowerment. It is what enables a student in a rural village to access world-class education, a farmer to monitor crops via smart sensors, or a doctor to conduct remote surgery with millisecond precision.
AT&T will acquire Lumen’s consumer fiber business in a $5.75B deal to expand its broadband coverage to 60 million U.S. locations by 2030. The transaction gives AT&T access to 4M enabled locations, 1M subscribers, and new metro markets like Seattle and Phoenix. Meanwhile, Lumen refocuses on enterprise innovation and AI-first networking.
Comcast Advertising and Waymark have launched an AI-powered TV ad platform that helps small businesses produce professional-quality commercials in minutes. By eliminating the high costs and long production times of traditional TV ad creation, this new solution offers fast, flexible, and affordable access to premium video inventory, ideal for local businesses looking to advertise on TV and streaming.
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top

Private Network Readiness Assessment

Run your readiness check now — for enterprises, operators, OEMs & SIs planning and delivering Private 5G solutions with confidence.
Start Your Private 5G Assessment Today — uncover gaps and deploy with confidence.