DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

The world's first demonstration of an automated driving application supported by 5G Standalone network slicing with controlled network features for QoS (Quality of Service) was announced by Deutsche Telekom, BMW Group, Valeo, Qualcomm, and Ericsson. The partners looked into how 5G SA network slicing with various QoS features can provide successful automotive use case scenarios.
DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

The world’s first demonstration of an automated driving application supported by 5G Standalone network slicing with controlled network features for QoS (Quality of Service) was announced today by Deutsche Telekom, BMW Group, Valeo, Qualcomm, and Ericsson.


The partners looked into how 5G SA network slicing with various QoS features can provide successful automotive use case scenarios. For example, without a reliable network connection, many upcoming automotive uses wouldn’t be possible.

5G SA’s key feature is network slicing. This means that different areas of the network can be allocated for specific uses, depending on things like required quality of service (QoS), performance, security, or latency. In addition, the User Equipment Route Selection Policy (URSP) feature allows devices to connect to multiple slices simultaneously based on what they need.

Furthermore, a Network API was utilized to request a QoS level from the network. This capability is called Quality on Demand (QoD), and it allows for different levels of quality based on the needs of various applications. The tests showed that, under various network load situations, how these features were able to meet the QoS demands of mission-critical applications successfully.

Nicolai Martin, SVP of BMW Group Driving Experience, says: “The BMW Group sees the activities in the telecommunications industry with 5G as a central enabler for many innovative automotive features and also for Automated Valet Parking. For such a new solution, several industries must work closely together to offer the customer a valuable benefit. The aim is to build a standardized and interoperable AVP ecosystem. The BMW Group welcomes activities in the telecommunications industry, especially the CAMARA project. This is an important enabler for future services.”

Claudia Nemat, Board member of Technology and Innovation Deutsche Telekom, says: “Deutsche Telekom is excited to be part of this activity to demonstrate the capabilities of advanced network features like 5G network slicing with integrated APIs to meet the Quality of Service demands of automotive use cases. Close cross-industry collaboration is essential to co-innovate and develop new solutions that benefit customers. This is an enabler for future services.”ย 

Eric Ekudden, Group CTO, Senior Vice President, and Head of Technology & Strategy at Ericsson, says: “Ericsson has provided the End-to-End Network for a successful Proof of Concept. We continue to support the realization of Use Cases using network slicing and exposure capability to monetize 5G network investment for Communication Service Providers (CSP).”

Enrico Salvatori, SVP & President Qualcomm Europe/MEA, Qualcomm Europe, Inc., says: “We are proud to be part of this project, utilizing Qualcomm Technologies’ long-established expertise in 5G and wireless innovation to help enable advanced features like 5G network slicing for reliable interoperability and improved quality-of-service. We look forward to continuing collaborating with partners across the automotive ecosystem to usher in the next generation of autonomous driving applications.”

Marc Vrecko, Business Group President Valeo Comfort & Driving Assistance Systems, says: “Communication between infrastructure and vehicles is a safety-critical element. Automated Valet Parking, developed in cooperation with BMW Group and tested with Deutsche Telekom, relies in part on Valeo software and systems both embedded in the car and installed in the parking infrastructure itself. Testing 5G interfaces jointly with Deutsche Telekom convinced us of the performance of cellular networks. To make mobility safer and smarter, Valeo has integrated advanced driver assistance systems (ADAS) into one of the main focuses of its innovations.”

Network APIs and Network Slicing

In February 2022, Deutsche Telekom announced that, in cooperation with the BMW Group and Valeo, they had completed initial tests for Quality of Service using the Quality on Demand feature as a network API. The application programming interface was tested with Automated Valet Parking (AVP), and the results were presented at Mobile World Congress (MWC) 2022.

While the CAMARA initiative was announced by GSMA, Quality on Demand was the first network API to be standardized under this global initiative. The Quality on Demand standard allows for a better quality of service between networks, technology vendors, cloud providers, operating system developers, and application creators.

Automated Driving Trial with Partners

There are an increasing number of automotive applications that require a dependable mobile network connection. A few examples of these use cases are safety features, remote control functions (like opening/closing doors remotely), and assisted or automated driving features.

The partners sought to learn if and how they could provide QoS features in future network deployments. To do so, they ran tests at Deutsche Telekom testing facilities in Berlin WinterfeldtstraรŸe. The test environment relied on cutting-edge Ericsson 5G SA technologies, including QoS support based on network slicing features and network APIs.

This trial saw BMW Group and Valeo provide mission-critical use cases for automated driving using the “Snapdragon Auto 5G Modem-RF” from Qualcomm Technologies, Inc. This enabled testing of the network slicing features to support interoperability. Deutsche Telekom, BMW Group, Valeo, and Ericsson all collaborated on designing the trial setup and related test cases.

Testing Network API, Network Slicing, and URSP features

The tests performed indicated that QoS features are extremely valuable about achievable bandwidth, stability, and latency. The partners showed how 5G SA network slicing allows for an automotive use case scenario that is supported by application-grade connectivity. This is enabled by three key QoS features in the operator network:

Network APIย โ€“ The trial demonstrates how, even in congested network situations, a mission-critical application can request and receive the improved network performance it needs to function properly by utilizing Quality on Demand (QoD) API in an enhanced mobile broadband (eMBB) slice.

Network Slicing โ€“ In the mission-critical scenario, data was transmitted via a high-quality slice, while in a non-mission-critical scenario, the data was transmitted via an eMBB slice. The trial’s measurement results revealed that, even in congested conditions where many users are simultaneously sharing mobile network resources, the automated driving function was always served with the necessary bandwidth.

UE Route Selection Policy โ€“ URSP was utilized to select network slices on the device side corresponding with available network slice options on the network end. From different applications, application traffic can be processed by numerous slices working in tandem, as demonstrated by our findings. For example, one high-priority application’s traffic would use a high-quality slice, while noncritical app traffic uses an eMBB slice.


Recent Content

In Beyond Connectivity: The Telco to Techco Transformation, leaders from e&, KDDI, and MTN reveal how telecoms are evolving into technology-first, platform-driven companies. These digital pioneers are integrating AI, 5G, cloud, smart infrastructure, and fintech to unlock massive valueโ€”from AI-powered smart cities in Japan, to inclusive fintech platforms in Africa, and cloud-first enterprise solutions in the Middle East. This piece explores how telcos are reshaping their role in the digital economyโ€”building intelligent, scalable, and people-first tech ecosystems.
In Balancing Innovation and Regulation: Global Perspectives on Telecom Policy, top leaders including Jyotiraditya Scindia (India), Henna Virkkunen (European Commission), and Brendan Carr (U.S. FCC) explore how governments are aligning policy with innovation to future-proof their digital infrastructure. From Indiaโ€™s record-breaking 5G rollout and 6G ambitions, to Europeโ€™s push for AI sovereignty and U.S. leadership in open-market connectivity, this piece outlines how nations can foster growth, security, and inclusion in a hyperconnected world.
In Driving Europeโ€™s Digital Future, telecom leaders Margherita Della Valle (Vodafone), Christel Heydemann (Orange), and Tim Hรถttges (Deutsche Telekom) deliver a unified message: Europe must reform telecom regulation, invest in AI and infrastructure, and scale operations to remain globally competitive. From lagging 5G rollout to emerging AI-at-the-edge opportunities, they urge policymakers to embrace consolidation, cut red tape, and drive fair investment frameworks. Europeโ€™s path to digital sovereignty hinges on bold leadership, collaborative policy, and future-ready infrastructure.
The future of manufacturing is intelligent, autonomous, and sustainable. Powered by private 5G networks, AI, and digital twins, smart factories are revolutionizing how goods are produced and maintained. From predictive maintenance to immersive virtual twins and AI-optimized energy systems, smart manufacturing is unlocking new levels of efficiency and innovation across industriesโ€”from ports and shipyards to agriculture and healthcare.
Smart mobility is reshaping how the world moves, powered by 5G, AI, and edge computing. From autonomous vehicles and real-time logistics to AI-driven drones and connected public transport, intelligent transportation systems are redefining urban mobility, logistics, and industrial automation. As global investment and collaboration grow, the transportation industry is transforming into a $11.1 trillion smart ecosystem focused on sustainability, efficiency, and connectivity.
FinTech, private 5G networks, and AI are converging to reshape digital finance across industries. From embedded payments and super apps to AI-driven credit scoring and secure M2M transactions, this $2 trillion opportunity is powered by mobile technology, cloud infrastructure, and regulatory evolution. Leaders must act fast to unlock new revenue, scale inclusion, and secure digital ecosystems.

Download Magazine

With Subscription
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Subscribe To Our Newsletter

Scroll to Top