NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment

NVIDIA and Google Cloud are collaborating to bring secure, on-premises agentic AI to enterprises by integrating Googleโ€™s Gemini models with NVIDIAโ€™s Blackwell platforms. Leveraging confidential computing and enhanced infrastructure like the GKE Inference Gateway and Triton Inference Server, the partnership ensures scalable AI deployment without compromising regulatory compliance or data sovereignty.
NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment
Image Credit: NVIDIA and Google Cloud

NVIDIA and Google Cloud are joining forces to enhance enterprise AI applications by integrating Google Gemini AI models with NVIDIA‘s advanced computing platforms. This collaboration aims to facilitate the deployment of agentic AI locally while ensuring strict compliance with data privacy and regulatory standards.

Enhanced Data Security with NVIDIA and Google Cloud


The partnership centers on the use of NVIDIAs Blackwell HGX and DGX platforms, which are now integrated with Google Clouds distributed infrastructure. This setup allows enterprises to operate Googles powerful Gemini AI models directly within their data centers. A key feature of this integration is NVIDIA Confidential Computing, which provides an additional layer of security by safeguarding sensitive code in the Gemini models against unauthorized access and potential data breaches.

Sachin Gupta, Vice President and General Manager of Infrastructure and Solutions at Google Cloud, emphasized the security and operational benefits of this collaboration. “By deploying our Gemini models on-premises with NVIDIA Blackwells exceptional performance and confidential computing capabilities, were enabling enterprises to leverage the full capabilities of agentic AI in a secure and efficient manner,” Gupta stated.

The Advent of Agentic AI in Enterprise Technology

Agentic AI represents a significant evolution in artificial intelligence technology, offering enhanced problem-solving capabilities over traditional AI models. Unlike conventional AI, which operates based on pre-learned information, agentic AI can reason, adapt, and make autonomous decisions in dynamic settings. For instance, in IT support, an agentic AI system can not only retrieve troubleshooting guides but also diagnose and resolve issues autonomously, escalating complex problems as needed.

In the financial sector, while traditional AI might identify potential fraud based on existing patterns, agentic AI goes a step further by proactively investigating anomalies and taking preemptive actions, such as blocking suspicious transactions or dynamically adjusting fraud detection mechanisms.

Addressing On-Premises Deployment Challenges

The ability to deploy agentic AI models on-premises addresses a critical need for organizations with stringent security or data sovereignty requirements. Until now, these organizations have faced significant challenges in utilizing advanced AI models, which often require integration of diverse data types such as text, images, and code, while still adhering to strict regulatory standards.

With Google Cloud now offering one of the first cloud services that enables confidential computing for agentic AI workloads in any environment, be it cloud, on-premises, or hybrid enterprises, no longer have to compromise between advanced AI capabilities and compliance with security regulations.

Future-Proofing AI Deployments

To further support the deployment of AI, Google Cloud has introduced the GKE Inference Gateway. This new service is designed to optimize AI inference workloads, featuring advanced routing, scalability, and integration with NVIDIA’s Triton Inference Server and NeMo Guardrails. It ensures efficient load balancing, enhanced performance, reduced operational costs, and centralized model security and governance.

Looking forward, Google Cloud plans to improve observability for agentic AI workloads by incorporating NVIDIA Dynamo, an open-source library designed to scale reasoning AI models efficiently across various deployment environments.

These advancements in AI deployment and management were highlighted at the Google Cloud Next conference, where NVIDIA held a special address and provided insights through sessions, demonstrations, and expert discussions.

Through this strategic collaboration, NVIDIA and Google Cloud are setting a new standard for secure, efficient, and scalable agentic AI applications, enabling enterprises to harness the full potential of AI while adhering to necessary security and compliance requirements.


Recent Content

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMCโ€™s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integrationโ€”laying the foundation for โ€œAI factoriesโ€ powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
Samsung has launched two new rugged devicesโ€”the Galaxy XCover7 Pro smartphone and the Tab Active5 Pro tabletโ€”designed for high-intensity fieldwork in sectors like logistics, healthcare, and manufacturing. These devices offer military-grade durability, advanced 5G connectivity, and enterprise-ready security with Samsung Knox Vault. Features like hot-swappable batteries, gloved-touch sensitivity, and AI-powered tools enhance productivity and reliability in harsh environments.
Nokia, Digita, and CoreGo have partnered to roll out private 5G networks and edge computing solutions at high-traffic event venues. Using Nokia’s Digital Automation Cloud (DAC) and CoreGoโ€™s payment and access tech, the trio delivers real-time data flow, reliable connectivity, and enhanced guest experience across Finland and international locationsโ€”serving over 2 million attendees to date.
OpenAI is developing a prototype social platform featuring an AI-powered content feed, potentially placing it in direct competition with Elon Musk’s X and Metaโ€™s AI initiatives. Spearheaded by Sam Altman, the project aims to harness user-generated content and real-time interaction to train advanced AI systemsโ€”an approach already used by rivals like Grok and Llama.
AI Pulse: Telecomโ€™s Next Frontier is a definitive guide to how AI is reshaping the telecom landscape โ€” strategically, structurally, and commercially. Spanning over 130 pages, this MWC 2025 special edition explores AIโ€™s growing maturity in telecom, offering a comprehensive look at the technologies and trends driving transformation.

Explore strategic AI pillarsโ€”from AI Ops and Edge AI to LLMs, AI-as-a-Service, and governanceโ€”and learn how telcos are building AI-native architectures and monetization models. Discover insights from 30+ global CxOs, unpacking shifts in leadership thinking around purpose, innovation, and competitive advantage.

The edition also examines connected industries at the intersection of Private 5G, AI, and Satelliteโ€”fueling transformation in smart manufacturing, mobility, fintech, ports, sports, and more. From fan engagement to digital finance, from smart cities to the industrial metaverse, this is the roadmap to telecomโ€™s next eraโ€”where intelligence is the new infrastructure, and telcos become the enablers of everything connected.
In AI in Telecom: Strategic Themes, Maturity, and the Road Ahead, we explore how AI has shifted from buzzword to backbone for global telecom leaders. From AI-native networks and edge inferencing, to domain-specific LLMs and behavioral cybersecurity, this article maps out the strategic pillars, real-world use cases, and monetization models driving the AI-powered telecom era. Featuring CxO insights from Telefรณnica, KDDI, MTN, Telstra, and Orange, it captures the voice of a sector transforming infrastructure into intelligence.

Download Magazine

With Subscription
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top