Northeastern University Debuts AI-Powered Private 5G Network

Northeastern University's Wireless Internet of Things Institute (WIoT) and Open6G R&D center unveil an AI-automated private 5G network, providing a customizable platform for wireless technology research and development beyond 5G.
5G - TeckNexus

Northeastern University’s Institute for the Wireless Internet of Things (WIoT) and Open6G R&D center have announced the first production-ready, AI-automated private 5G network. Utilizing open-source components, the network features a fully virtualized, programmable, and O-RAN compliant system in a campus setting.


The network offers connectivity to 5G devices, such as smartphones, cameras, and dongles, facilitating video conferencing, browsing, and streaming โ€“ essential elements of experiential learning at Northeastern. Tommaso Melodia, WIoT director and professor of electrical and computer engineering at Northeastern, stated that this pioneering O-RAN network provides WIoT researchers and industry partners with a fully customizable platform to explore new wireless use cases and technologies beyond 5G.

Built on open-source programmable components and computing solutions from WIoT partners like Dell Technologies and NVIDIA, the WIoT 5G network incorporates software-defined radios and dedicated automation and orchestration pipelines through zTouch, Northeastern’s AI-based management, control, and orchestration framework. zTouch enables rapid deployment of the software-based infrastructure, automated configuration from high-level intents, and management of the software-defined radio frontends. The network operates on Dell servers and employs OpenAirInterface and Open5Gs for radio access and network implementations. It also features NVIDIA Aerial Research Cloud-based base stations, integrating a GPU-based physical layer and OpenAirInterface.

Northeastern’s private 5G deployment exemplifies key features of next-generation wireless systems, including openness and programmability, resiliency and self-healing behavior, and intelligent orchestration. The network is currently serving indoor users on the Northeastern University campus in Boston, with plans to extend to the Burlington campus in the coming weeks. These locations are part of Northeastern’s FCC Innovation Zone, enabling over-the-air experimentation in multiple frequency bands, including the CBRS band.

The private 5G deployment offers research opportunities in next-generation wireless networks. Its open, programmable, and virtualized nature simplifies the deployment and testing of innovative features and exposes telemetry and network performance for AI and ML model development. The network can be employed to develop and test advanced use cases, such as spectrum sharing mechanisms, AR/VR, end-to-end slicing solutions, and advanced security solutions, among others.


Recent Content

Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425โ€“7.125 GHz) for mobile use, citing the spectrumโ€™s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europeโ€™s digital leadership and hinder next-generation connectivity infrastructure.
Dirty data in data centers undermines everything from AI accuracy to energy efficiency. With poor metadata, data drift, and dark data hoarding driving up costs and emissions, organizations must adopt DataOps, metadata tools, and a strong data culture to reverse the trend. Learn how clean data fuels smarter automation, compliance, and sustainability.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Vodafone is expanding its role in the UK smart metering upgrade by providing fixed-line connectivity between energy suppliers and the Data Service Platform (DSP). This move complements its existing mobile network role and positions Vodafone as a critical telecom partner in the UK’s digital energy transition, helping to advance national net-zero and smart grid goals.
AI agents are transforming enterprise operations, acting as autonomous digital coworkers that enhance productivity, reduce costs, and support strategic decision-making. With a projected 327% growth by 2027, enterprises must adopt AI agents to remain competitive in an AI-first economy.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top