BT Group and Stratospheric Platforms trial HAPS aircraft based 4G/5G coverage in remote areas

BT Group and Stratospheric Platforms Ltd have joined forces for mobile coverage trial at BTโ€™s Adastral Park facility. This new antenna technology seeks to provide 4G and 5G from the air in an effort to unlock connectivity for hard-to-reach areas with cost-efficient sustainability.
BT Group and Stratospheric platforms trial HAPS aircraft based 4G/5G coverage in remote areas

BT Group and Stratospheric Platforms Ltd (SPL) announced that they would be conducting trials of a state-of-the-art antenna technology mounted on High Altitude Platform Stations (HAPS) aircraft. The trial is going to take place at Adastral Park – the global R&D base for BT – with the aim of providing broadband service even in remote locations which previously seemed out of reach.


Thanks to Innovate UK’s funding, this project has the potential to offer remarkable opportunities for industries that work in distant regions, such as transport, maritime security and search & rescue. It could bring faster and smoother connectivity directly through consumers’ mobile devices no matter how far away they are located.

UK network infrastructure can be extended with the deployment of HAPS solutions, and it could also act as a reliable backup for terrestrial networks in urgent situations like disaster relief or humanitarian aid. Moreover, its uses are broad, from remotely monitoring industrial sites to ensuring efficient operations on farms โ€“ offering countless opportunities for optimization.

With SPL’s advanced antenna technology, users can enjoy seamless 4G and 5G access directly on their smartphones. The phased array antenna is capable of providing speeds up to 150Mbps over an area measuring 140km or 15,000 square km – equivalent in size to 450 terrestrial masts, via 500 individual steerable beams.

HAPS offers not only exceptional performance and wide-area connectivity but also incredible cost efficiency and energy savings. With the phased array antennae and an aircraft fueled by hydrogen, sustainable 4G and 5G connections can be provided over vast areas from the sky – thus eliminating any need to construct expensive terrestrial infrastructure in far-flung regions.

To begin BT and SPL’s ascent to the heavens, they must first complete a secure 5G HAPS communications system trial. SPL will install its phased array antenna on an elevated structure (which serves as a stand-in for high-altitude aircraft) to assess how well it works with BTโ€™s 5G secure network architecture in relation to its Open RAN testbed. During this experiment, multiple user groups utilizing distinct use cases need to be supported at the same time across one solitary network connection.

Tim Whitley, Managing Director Research and Network Strategy at BT Group expressed his enthusiasm for their partnership with SPL: โ€œWe are ecstatic to collaborate with them in order to unlock the immense potential of HAPS aircrafts. This truly innovative project is sure to extend our UK 4G and 5G footprint, which is already higher than any other service provider in the nation. It will further boost connectivity within rural regions while allowing us new opportunities to serve private users.”

Richard Deakin, CEO at SPL, happily stated: โ€œThe whole team is thrilled to be collaborating with BT Group in taking the groundbreaking UK-developed technology to an even higher level. Joining hands with BT will further help our mission of achieving a world-first 5G demonstration from the sky that we achieved back in 2022. We look forward to supporting Britain on its journey towards becoming a science super-power.”


Recent Content

Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425โ€“7.125 GHz) for mobile use, citing the spectrumโ€™s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europeโ€™s digital leadership and hinder next-generation connectivity infrastructure.
Dirty data in data centers undermines everything from AI accuracy to energy efficiency. With poor metadata, data drift, and dark data hoarding driving up costs and emissions, organizations must adopt DataOps, metadata tools, and a strong data culture to reverse the trend. Learn how clean data fuels smarter automation, compliance, and sustainability.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Vodafone is expanding its role in the UK smart metering upgrade by providing fixed-line connectivity between energy suppliers and the Data Service Platform (DSP). This move complements its existing mobile network role and positions Vodafone as a critical telecom partner in the UK’s digital energy transition, helping to advance national net-zero and smart grid goals.
Connecting the unconnected requires more than just broadband buildout. National digital inclusion strategies focus on affordability, digital skills, devices, and sustainable infrastructure to empower all communities. Learn how federal programs, state initiatives, and public-private partnerships are reshaping broadband access across America.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top