TERAGO Launches Canada’s First Private 5G MMwave Network at McMaster University’s Research Institute

TERAGO has established Canada's premier 5G MMwave private network for Industry 4.0 research at McMaster University's new Manufacturing Research Institute (MMRI) in Hamilton, Ontario. Over the next three years, this network will enable researchers to test and develop advanced manufacturing technologies utilizing 5G MMwave capabilities.

TERAGO has established Canada’s premier 5G MMwave private network for Industry 4.0 research at McMaster University’s new Manufacturing Research Institute (MMRI) in Hamilton, Ontario.


Over the next three years, this network will enable researchers to test and develop advanced manufacturing technologies utilizing 5G MMwave capabilities. Offering high bandwidth, ultra-low latency, and support for thousands of devices, 5G millimeter wave networks can help industries reduce costs, enhance efficiency, and improve worker safety through augmented reality, high-speed vision systems, extensive industrial IoT deployments, and autonomous vehicles.

John Preston, Associate Dean of Research, Innovation, and External Relations at the Faculty of Engineering, expressed enthusiasm for the official launch of the 5G millimeter wave network in collaboration with TERAGO and the innovative advancements this partnership will bring to Canada’s industrial sector.

Stephen Veldhuis, MMRI Director and Braley-Orlick Chair in Advanced Manufacturing Engineering, highlighted McMaster University’s pioneering role in adopting a private 5G millimeter wave network for Industry 4.0 research. He shared excitement for the next stage of their partnership with TERAGO and the network’s operational status.

In November 2021, TERAGO and McMaster announced their collaboration, and since then, they have worked closely to develop use cases explored by researchers in McMaster’s new 21,000-square-foot advanced manufacturing facility, supported by TERAGO’s 5G MMwave private network.

Matthew Gerber, TERAGO’s CEO, expressed excitement about the launch of Canada’s first 5G millimeter private network at MMRI. He emphasized that their joint teams will demonstrate the benefits of a low-latency, high-speed millimeter private network for Canadian manufacturers seeking to boost capabilities, enhance efficiencies, and reduce costs.


Recent Content

Oulu University Hospital has deployed Europe’s first Private 5G Standalone (SA) network, revolutionizing healthcare with real-time patient monitoring, AI-assisted imaging, and augmented reality (AR) for surgery. Built by Boldyn Networks using Nokia Modular Private Wireless (MPW) technology, this high-speed, ultra-reliable network ensures seamless data flow, improved diagnostics, and enhanced patient safety. Learn how 5G is shaping the future of smart hospitals.
5G coverage in the U.S. varies significantly between urban and rural areas. While T-Mobile leads in availability, AT&T leverages FirstNet for rural expansion, and Verizon focuses on C-band spectrum. States like Nevada and Illinois rank high for 5G access, while Wyoming struggles with coverage gaps. With continued investment from major carriers and the FCC’s 5G Fund, rural connectivity is set to improve nationwide. Source: Ookla® (This article is based on Ookla’s research and Speedtest Intelligence® data).
AI is playing a key role in telecom security by strengthening threat detection, fraud prevention, and regulatory compliance. As 5G, IoT, and edge computing expand, telecom networks face cyber threats such as AI-specific attacks, network intrusions, and data breaches. AI-powered security solutions provide automated threat response, anomaly detection, and AI lifecycle protection, helping telecom providers maintain a secure and resilient network infrastructure.
AI is transforming the relationship between telcos and hyperscalers like AWS, Google Cloud, and Microsoft Azure. With AI-driven automation, cloud-native networks, and edge computing, telecom operators are optimizing efficiency, reducing costs, and unlocking new revenue streams. As AI-powered innovations reshape 5G, cybersecurity, and digital services, these strategic partnerships are set to redefine the future of telecom.
The FCC’s proposed CBRS changes are facing backlash from 25 organizations, including Amazon, Comcast, and Lockheed Martin, who argue that increased power levels and relaxed emissions limits would harm rural broadband, private networks, and competition. The proposal risks turning CBRS into a high-power cellular band, benefiting major carriers at the expense of small businesses, industrial users, and public access initiatives. As the debate intensifies, the future of CBRS and its diverse ecosystem remains uncertain.
EE has deployed the UK’s first 5G Standalone (SA) network at Wembley Stadium, setting a new benchmark for sports venue connectivity. This upgrade delivers faster speeds, ultra-low latency, and enhanced capacity, ensuring seamless live streaming, mobile transactions, and digital fan experiences. As part of EE’s nationwide 5G expansion, this deployment paves the way for smart stadium innovations and next-generation event experiences.

Download Magazine

With Subscription

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top