Newmont Expands Private 5G for Safer, Efficient Mining with Telstra and Ericsson

Newmont Corporation is upgrading its mining operations by replacing outdated Wi-Fi with Private 5G networks, following a successful trial at its Cadia mine in Australia. Partnering with Ericsson and Telstra Purple, the 5G deployment significantly enhances safety, operational efficiency, and scalability in both underground and surface mining. This shift allows for better connectivity, reducing safety risks and improving productivity by supporting more autonomous and remote-controlled machinery. Newmont plans to expand 5G across its global network of mines, setting a new standard in the industry.
Newmont Expands Private 5G for Safer, Efficient Mining with Ericsson and Telstra
Image Credit: Newmont Cadia Mine

Newmont’s Bold Shift to Private 5G in Mining Operations

Newmont Corporation, the worldโ€™s leading gold company, is taking a bold step forward by replacing its existing Wi-Fi infrastructure with next-generation 5G wireless networks at its major mining operations. This strategic move comes on the heels of a successful private 5G trial conducted at its Cadia mine in New South Wales, Australia, which showcased the transformative potential of 5G in enhancing safety and operational efficiency in both underground and surface mining.

Overcoming Wi-Fi Limitations in Underground Mining


Prior to the 5G trial, Newmontโ€™s mining operations were heavily reliant on Wi-Fi to manage remote-controlled and autonomous machinery, such as ore loaders and drilling rigs. However, this Wi-Fi setup presented significant challenges. Underground, the Wi-Fi connections were plagued by unreliable and unpredictable performance, especially under heavy data load. Upload speeds were capped at 20-30 Mbps, which was insufficient for the simultaneous operation of multiple machines. The limited bandwidth led to frequent false automation safety stops due to packet loss, disrupting operations and posing safety risks.

Newmont’s Private 5G Trial: Enhancing Safety and Efficiency

In response to these challenges, Newmont launched a trial of 5G Private Networks in partnership with Ericsson and Telstra Purple at its Cadia mine. The trial marked a significant departure from the limitations of Wi-Fi. Utilizing Ericssonโ€™s Private 5G, Newmont achieved upload speeds of approximately 90 Mbps along underground access drives and declines, and an impressive 150 Mbps upload and 500 Mbps download on extraction drives. This leap in connectivity was crucial for the reliable operation of remote-controlled and autonomous mining systems, which depend on real-time data transmission.

The deployment also extended to surface-level communications, where 5G New Radio (NR) technologies were tested. Innovations such as 64T64R Massive MIMO, beamforming, and beam-steering provided a significant boost in throughput, particularly over the extended distances typical of surface operations.

Cadia Mine Trial: Proof of Private 5G’s Transformative Power

The trial results at Cadia mine were overwhelmingly positive, prompting Newmont to expand the use of 5G across its global network of tier-one mines.

According to Suzy Retallack, Newmontโ€™s Chief Safety and Sustainability Officer, โ€œThe trial results show the extraordinary potential of 5G to improve safety, increase the number of machines that can be operated on a single network, and boost production efficiencies in underground mining.โ€ The success of this trial has solidified 5G’s role in Newmontโ€™s communication strategies for both underground and surface operations.

Why Newmont Chose Private 5G Over Wi-Fi

Newmontโ€™s choice to transition from Wi-Fi to Private 5G was driven by the need for a more robust, scalable, and reliable network solution that could meet the demanding requirements of modern mining operations. The trial also included the use of advanced 5G technologies on the surface, demonstrating the potential of 5G to deliver high throughput and reliable connectivity even in the challenging environment of large-scale surface mining.

Key Benefits of Private 5G for Newmont’s Mining Sites

The adoption of 5G at Newmontโ€™s mining sites brings numerous benefits:

  • Enhanced Safety: 5G’s reliable connectivity minimizes the risk of false automation safety stops, significantly improving operational safety.
  • Increased Efficiency: The higher data speeds and capacity of 5G allow for the simultaneous operation of more autonomous and remote-controlled machinery, leading to improved productivity.
  • Global Scalability: The trialโ€™s success has encouraged Newmont to plan for the deployment of 5G across its global network of tier-one mines, enhancing both underground and surface operations.

How Private 5G is Enabling the Mining Industry

The successful implementation of 5G at Newmontโ€™s Cadia mine is a major milestone not just for the company, but for the mining industry as a whole. As noted by Manish Tiwari, Head of Private Cellular Networks at Ericsson, โ€œ5G is enabling rapid global transformation of industry, supporting digitalization and movement towards automated, more efficient, and safer operations across a number of sectors.โ€ The broader mining industry, which has traditionally been slow to adopt new technologies, is now poised to benefit from the safety and efficiency improvements that 5G offers.

Newmont’s Leadership in Mining Tech Innovation

Newmont is leading the charge in the mining industry by embracing cutting-edge technology to enhance safety and efficiency. By phasing out Wi-Fi in favor of 5G, Newmont is setting a new standard for operational excellence in mining, demonstrating a commitment to leveraging technology for safer, more productive mining operations.

The Critical Role of Ericsson and Telstra in Newmont’s Private 5G Success

The success of Newmontโ€™s 5G initiative at Cadia was made possible through close collaboration with Ericsson and Telstra Purple. Ericsson provided the necessary 5G technology and expertise, while Telstra Purple, the system integration division of Australian operator Telstra, played a critical role in supplying telecom equipment and spectrum for the trial. This partnership was instrumental in overcoming the challenges posed by the underground mining environment.

Newmont’s Private 5G Expansion: Current Status and Future Plans

Following the successful trial at Cadia, Newmont has applied to the Australian Communications and Media Authority (ACMA) for Area Wide Licenses to extend and embed the use of 5G technology across all its Australian operations. The company is also planning to roll out 5G networks across its global network of tier-one mines, which includes 14 sites across four continents. This expansion is expected to unfold over the coming years, as Newmont continues to integrate 5G into its operational framework.

Industry Endorsements of Newmont’s Private 5G Initiative

The trial has received strong endorsements from key stakeholders within Newmont and its partners. The demonstrated benefits of 5G in improving safety and productivity are likely to inspire other mining companies to consider similar initiatives, potentially leading to widespread adoption of 5G technology in the industry. Newmontโ€™s pioneering efforts have firmly established 5G as a critical component of future mining operations.

As Newmont continues to lead the way with the deployment of 5G Private Networks, the mining industry is on the brink of a safer, more efficient, and technologically advanced future.


Recent Content

ย Virgin Media O2 and Daisy Group have joined forces to form a ยฃ1.4B B2B telecom and IT services powerhouse, targeting UK enterprises with an integrated offering that includes private 5G, cloud, AI, and cybersecurity solutions. With Virgin Media O2 holding a 70% stake and Daisy 30%, the new entity aims to accelerate enterprise digital transformation, drive operational synergies, and compete against both traditional telcos and cloud-first players in a fast-evolving market.
Indoor 5G enables high-speed, low-latency connectivity in enclosed environments like offices, hospitals, and airports, supporting mission-critical applications and smart building operations. The market is driven by technological advancements in small cells, distributed antenna systems, and a mix of mmWave and Sub-6 GHz bands. Asia-Pacific leads in adoption due to smart city initiatives and government support. Picocells and antennas are key components, with growing demand in emerging economies fueled by subsidies and infrastructure upgrades. Recent developments include partnerships and acquisitions aimed at strengthening indoor 5G capabilities.
Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425โ€“7.125 GHz) for mobile use, citing the spectrumโ€™s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europeโ€™s digital leadership and hinder next-generation connectivity infrastructure.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Vodafone is expanding its role in the UK smart metering upgrade by providing fixed-line connectivity between energy suppliers and the Data Service Platform (DSP). This move complements its existing mobile network role and positions Vodafone as a critical telecom partner in the UK’s digital energy transition, helping to advance national net-zero and smart grid goals.
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top