Private Network Check Readiness - TeckNexus Solutions

The 5G Journey: Progress, Potential, and the Road Ahead

This article delves into the development of 5G networks, the challenges they face, and the implications for the future of cellular technology.
5G - TeckNexus

​The cellular industry’s 5G network rollout is now several years underway, and while the search for a revolutionary use case that will solidify 5G’s position in cellular technology continues, it is fundamentally achieving its intended purpose—albeit with some caveats.


5G networks generally provide improved and faster service compared to 4G. However, Ookla’s speed test data reveals that 5G networks’ upload and download times generally declined worldwide compared to a year ago. Moreover, even the strongest 5G networks barely reach 1 gigabit per second, falling short of the International Telecommunication Union’s (ITU) ideal download speed of 20 Gbps.

The issues faced by 5G networks mirror those experienced by previous cellular generations. As more customers purchase new devices compatible with these networks, capacity is strained, necessitating network densification. In addition, the lack of millimeter wave network development has also exacerbated 5G’s growing pains.

According to industry analyst Mark Giles, most network operators started their 5G rollouts with non-standalone 5G networks built on top of existing 4G infrastructure. While more cost-effective, this approach has limited deployments, as operators can only build 5G networks where they have existing infrastructure. Additionally, regulatory and permitting challenges have hampered network expansion, particularly in dense urban areas.

In suburban and rural areas, the appeal of 5G is its ability to access new spectrum bands, most notably the millimeter wave band (24 GHz to 40 GHz), which supports lower latencies and greater data rates. However, higher frequencies only travel a little, which is favorable for cities but not for less urbanized areas.

Consequently, network performance is expected to degrade as more people in various locations begin using 5G networks.
Millimeter wave technology has seen limited uptake outside a few countries, including the United States. Companies like Verizon have pivoted to other new bands, such as the C-band (4 to 8 GHz). As of 2022, only 28 operators in 16 countries are deploying millimeter wave technology, according to the Global mobile Suppliers Organization (GSA).

While the ITU’s aspirational 5G download speed of 20 Gbps remains attainable, many countries’ median 5G network experiences still need to meet the organization’s user experience data rate benchmark of 100 Mbps down and 50 Mbps up. Speed test data from Ookla identifies Canada, Italy, Qatar, and the US as countries with improving 5G network performance, though Giles doesn’t believe there is a common factor among them.

For the US, Giles suggests that more availability of new spectrum has helped operators stay ahead of growing congestion on new networks. In contrast, Qatar’s massive investment surrounding the 2022 FIFA World Cup included building robust 5G networks.

It is bit early to determine the impact of 5G’s early challenges on 6G development, but several possible implications exist. First, the industry may devote less time to terahertz wave research due to the lackluster debut of millimeter wave technology and instead consider merging cellular and Wi-Fi technologies for dense coverage areas.

Giles believes the degradation of 5G networks highlights the disconnect between the ambitious vision for these technologies and the reality on the ground. Furthermore, this gap serves as a reminder that achieving the full potential of 5G technology will require overcoming various challenges and adapting to the evolving needs of users and communities.


Recent Content

Event Start Date: 19th Nov, 2024
Event End Date: 20th Nov, 2024
Location: Mandarin Oriental Al Faisaliah, Riyadh
Exclusive 20% discount with “SCWSMENA” discount code
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture’s advantages and challenges. It highlights how this “bent-pipe” NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring the potential and complexities in achieving seamless satellite-based mobile communication.
Dejero, an innovator in mission-critical connectivity solutions proven to deliver real-time data and high-quality live video over IP for situational awareness, recently supplied its GateWay network aggregation device to Winston-Salem Police Department (WSPD) for critical connectivity during the International Black Theatre Festival (IBTF). Powered by Dejero Smart Blending Technology™, GateWay is certified by multiple nationwide US wireless communications networks built for priority-use of first responders and the public safety community. Smart Blending Technology combines connectivity from diverse cellular and other IP network providers, including LEO, MEO and GEO satellites creating a virtual ‘network of networks’ to provide access to a far greater coverage area than any single provider can deliver. Easily transported, GateWay can be set up in a matter of minutes, making it ideal for on-location events.
Ericsson has launched a private 5G network pilot at Schiphol Airport, aimed at modernizing operations as part of the “Airport 4.0” strategy. The network addresses the airport’s challenges like aging infrastructure and increasing passenger volumes with a secure, high-speed, low-latency solution. Ericsson’s network supports both 4G and 5G, enabling IoT integration, predictive maintenance, and enhanced security, positioning Schiphol as a global leader in airport innovation.
The telecom industry is rapidly evolving through the adoption of AI and a culture of continuous innovation. High-performing companies are leveraging technologies like 5G, AI-driven automation, and network slicing to improve efficiency and reduce costs. A recent Upwork Research Institute study reveals that companies focusing on workforce upskilling and aligning technology with business goals are better positioned for long-term success in a competitive market. These strategies are transforming telecom operations, making them more agile, cost-effective, and prepared for future challenges.
Nokia and NTT DATA have expanded their global Private 5G partnership with a deployment in Brownsville, Texas. This initiative provides enhanced connectivity for smart city applications, improving public safety and operational efficiency. Leveraging Nokia’s AirScale RAN and NTT DATA’s Private 5G Network-as-a-Service platform, the city is set to benefit from scalable, high-speed wireless solutions that support future digital transformation goals. This collaboration positions Brownsville as a leader in smart city innovation in North America.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025