Private Network Check Readiness - TeckNexus Solutions

DoD’s Private 5G Deployment Strategy to Modernize Military Communications

The U.S. Department of Defense has unveiled its strategy for deploying private 5G networks to enhance operational capabilities, connectivity, and security across military installations. This initiative, tied to the DoD's modernization plans, focuses on mission-specific 5G solutions, streamlined acquisitions, and Open RAN innovation.
5G Open RAN in US Defense: From Prototype to Full Deployment

Driving Military Modernization with 5G Technology

The U.S. Department of Defense (DoD) formalized its strategy for deploying private 5G networks across military installations, marking a pivotal step in enhancing operational capabilities, connectivity, and security. This strategy aligns with the DoD’s broader modernization initiatives detailed in the “Fulcrum: Department of Defense Information Technology Advancement Strategy” released in June 2024. The adoption of 5G technology is a cornerstone of the DoD’s efforts to leverage next-generation connectivity for improved mission-critical operations and the overall warfighting capabilities of the Joint Force.

Enhancing Connectivity and Mission Capability with High-Speed Private 5G Networks


Private 5G networks provide high-speed, reliable, and mission-specific connectivity solutions that go beyond the capabilities of commercial 5G networks. While commercial networks will play a significant role in meeting general connectivity needs on military installations, private networks offer bespoke solutions tailored to security, mission demands, and operational uniqueness. This capability is particularly critical for ingesting, processing, and transmitting massive volumes of data—a necessity in maintaining the U.S. military’s information and decision superiority.

Strategic Objectives for Private 5G Deployment

The DoD’s Private 5G Deployment Strategy is built around three strategic objectives designed to maximize the effectiveness and security of 5G networks in military contexts:

  1. Aligning Private 5G Infrastructure with Mission Requirements
    The strategy ensures that private 5G deployments meet specific mission, security, operational environment, and performance criteria unique to each installation. Decision-makers must evaluate the necessity of private 5G solutions based on factors such as security, coverage, and performance to determine if a tailored private network is more appropriate than commercial options. This approach ensures that network infrastructure remains scalable, maintainable, and adaptable to evolving military needs.
  2. Accelerating 5G Acquisition, Development, and Deployment
    The DoD aims to streamline and expedite the acquisition and deployment of private 5G capabilities. Leveraging tools like the forthcoming “5G Acquisition Playbook,” DoD Components will receive essential guidance for integrating commercial 5G technologies into mission systems. This playbook, in combination with the “DoD 5G Reference Architecture,” will serve as a critical resource for deploying and managing 5G systems on or near military installations. These resources will focus on enhancing IT oversight, reducing delivery cycles, and maximizing the effectiveness of deployed systems while maintaining cybersecurity standards.
  3. Expanding the Open RAN Ecosystem
    The DoD plans to promote the use of Open Radio Access Network (Open RAN) solutions where feasible to increase vendor diversity, supply chain security, and operational flexibility. Open RAN’s modular architecture, standardized interfaces, and ability to leverage commodity hardware through software-driven functions will foster innovation and enhance network capabilities. By deploying Open RAN prototypes and integrating RAN Intelligent Controllers (RICs), the DoD seeks to improve network flexibility, spectrum agility, and management efficiency at scale.

Supporting Military Modernization and All-Domain Operations with 5G

The DoD’s push for private 5G networks is driven by the need to modernize military communication networks, overcoming existing constraints related to capacity, scalability, resilience, and interoperability. Enhanced 5G infrastructure will enable seamless data access, greater network capacity, and robust support for diverse mission-critical applications. The DoD aims to work closely with private-sector partners to further explore and test the advantages and vulnerabilities of 5G through shared research, prototype deployments, and industry collaboration.

Core Components of Private 5G Networks for Military Applications

Unlike public 5G networks, private 5G networks serve a defined and approved user base, offering targeted performance, security, and access features tailored to military needs. Private networks may be owned and operated by mobile network operators, third parties, or the DoD itself, depending on specific requirements. By integrating Open RAN solutions, the DoD ensures transparency, component modularity, and increased operational security, all while supporting innovation at the network level.

Implementation and Guidance for Military Departments

The successful implementation of private 5G networks requires a coordinated approach that balances operational needs, cybersecurity considerations, and cost. Military departments are tasked with evaluating business cases, leveraging existing enterprise DoD 5G core networks, and adhering to cybersecurity and supply chain risk management requirements. To further streamline this effort, the DoD will provide additional guidance, including a “5G Reference Architecture” and tailored acquisition frameworks.

Future Steps and Strategic Impacts of DoD’s 5G Deployment

The deployment of private 5G networks is expected to significantly enhance the DoD’s operational capabilities by improving connectivity, enabling data-driven decision-making, and facilitating seamless communication across all domains of military operations. The DoD is committed to maximizing the utility of both commercial and private 5G networks while ensuring the security and resilience of its communications infrastructure. In doing so, the DoD seeks to maintain a technological edge and promote a robust and agile global military communications network.

The full DoD Private 5G Deployment Strategy, detailing these initiatives and guidelines, is available here​.


Recent Content

India’s rejection of Nokia’s 5G network slicing patent highlights a growing legal battle over telecom IP. Nokia’s appeal challenges India’s strict stance on software patents, while global competitors like Huawei and Ericsson dominate the 5G patent race. This decision may reshape vendor strategies, investment priorities, and legal precedents in next-gen telecom.
Qualcomm teams up with Lenskart to introduce AI-driven smart glasses to India, leveraging Snapdragon XR platforms for immersive AR, VR, and MR experiences. With over 100 devices already powered by Snapdragon XR and a strong push for localized innovation, Qualcomm is betting big on spatial computing as the next phase of everyday tech.
Europe’s 5G progress is accelerating but unevenly. Denmark, Sweden, and Spain lead with strong 5G availability and SA deployment, driven by early spectrum allocation and targeted policy. Meanwhile, the UK, Belgium, and Hungary trail due to regulatory delays, infrastructure bottlenecks, and weak investment. With the Digital Decade 2030 goal in sight, aligning on policy, spectrum, and subsidies will be key to closing the EU’s internal 5G divide.
Many fiber rollouts stumble before trenching begins, not in the field, but in flawed planning rooms. This article uncovers why approved designs collapse under real-world conditions, how disconnected inventories and outdated GIS layers set projects up for failure, and why simulation, permitting, and collaboration must start early. Learn how telecom teams can replace static spreadsheets with live intelligence—and why VC4’s Service2Create rewrites the rules of fiber network planning.
Charter Communications warns of a 200% increase in targeted fiber attacks across Missouri in 2025, calling them acts of domestic terrorism. With 148 outages already reported, these incidents have crippled emergency services, hospitals, and financial systems—raising alarm over national infrastructure vulnerabilities and sparking legislative debate.
At the Emirates Great Britain Sail Grand Prix in Portsmouth, Ericsson and BT combined private 5G and public 5G Standalone (SA) to enable real-time boat telemetry, low-latency video for broadcast, and immersive AR/VR fan experiences. The hybrid network, featuring Ericsson Private 5G and BT’s 5G SA slicing, created a fully connected race ecosystem spanning multiple sites and the F50 fleet.
Whitepaper
How IoT is driving cellular and enterprise network convergence and creating new risks and attack vectors?...
OneLayer Logo
Whitepaper
The combined power of IoT and 5G technologies will empower utilities to accelerate existing digital transformation initiatives while also opening the door to innovation opportunities that were previously impossible. However, utilities must also balance the pressure to innovate quickly with their responsibility to ensure the security of critical infrastructure and...
OneLayer Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025