World’s First Robotic Surgery Using Meta Quest and 3D Visualization Demonstrate a Real-World Application of Augmented Reality (AR)

Levita Magnetics pioneers the world's first AR-assisted robotic surgeries, combining the Meta Quest 3 headset and 3D visualization in Santiago, Chile. This breakthrough in surgical tech enhances precision and efficiency, setting a new standard in patient outcomes and offering future potential for telesurgery and AI integration.
World's First Robotic Surgery Using Meta Quest and 3D Visualization Demonstrate a Real-World Application of Augmented Reality (AR)
Image Credit: Levita | Dr. Alberto Rodriguez Navarro, minimally invasive surgeon and CEO of Levita Magnetics

Levita Magnetics’ state-of-the-art MARS robotic system offers surgeons unparalleled depth perception, designed to enable faster and more precise procedures.


In a groundbreaking advancement for medical science, surgeons in Santiago, Chile, performed the world’s first robotic surgeries combining 3D visualization and augmented reality (AR), marking a significant step forward in improving surgical speed, visualization, precision, and patient outcomes.

Surgeons used the Levitaยฎ MARSยฎ robotic platform to perform a series of 10 operationsย leveraging the Meta Quest 3 headset and theย B.ย Braunย Aesculap EinsteinVisionย 3Dย camera.

“Inย surgery, viewing is everything, andย this is aย majorย leap forwardย in surgical visualization,” said Dr. Rodriguez Navarro. “The surgeon-controlled stable surgical view provided by the MARS robotic system enables us to incorporate augmented reality and 3D visualization, allowing for an unprecedented improvement in surgical view. Our goal is to empower the surgeon with the capabilities to provide a safer, faster, and more precise procedure. This is a real-world application of AR and 3D that will truly transform the way surgery is performed.”

Dr. Rodriguez Navarro, a minimally invasive surgeon and CEO of Silicon Valley-based Levita Magnetics, was instrumental in developing the MARS robotic platform. This FDA-cleared innovative robotic system features Levita’s proprietary Dynamic Magnetic Positioningโ„ข technology,ย allowingย surgeons toย maneuverย instrumentsย insideย theย bodyย usingย magnets. MARS reduces the number of incisions and results in faster recovery, less pain, and fewer scars*.

By incorporating immersive 3D visualization into the surgeon’s view from the operating table, Levita is enhancing visibility and depth perception, resulting in more efficient surgeries. AR headsets offer the ability to enlarge and reposition the 3D view on the dynamic screen, making surgeriesย moreย ergonomicย whileย keepingย theย surgeonย closely connectedย toย theย patientย withinย the sterile surgical field.

Global Impact of the First AR-Driven Robotic Surgeries

Theย surgeriesย performedย atย Hospital Luisย Tisnรฉ,ย partย ofย theย governmentalย healthcareย systemย in Chile, showcase the technology’s potential to make advanced robotic procedures more accessible to public hospitals and ambulatory surgical centers (ACS), where healthcare resources are often limited.

“The use of augmented reality in robotic surgeries is a pioneering advancement in the public systemย inย Chile andย worldwide,ย allowing usย toย improveย precisionย inย abdominalย surgeries,”ย said Dr. Osvaldo Salgado, the Vice Minister of Health in Chile. “These surgical interventions were performedย using augmentedย realityย andย theย Levita roboticย platform,ย allowing theย patient’s internal structures to be visualized in 3D and improving safety and efficiency.”

Advancing Telesurgery and AI in Robotic Surgery

ARย headsets projectย aย high-definition,ย virtualย screenย directly inย frontย ofย theย surgeon, markingย the first step toward a fully integrated virtual diagnostics dashboard. While this technology is not cleared by the FDA and not yet available for sale, Dr. Rodriguez Navarro envisions providing real-time access to vital signs, patient history, previous diagnostic images and other critical information, all within the surgeon’s virtual visual field.

This innovation also opens the door to telesurgery and telementoring, with the potential to transformย surgicalย practicesย worldwide,ย especiallyย inย remoteย areasย withoutย surgical expertise.

As the platform continues to evolve, the Levita team is working to integrate artificial intelligence (AI),ย enablingย real-timeย surgeryย dataย analysis.ย Thisย AI-poweredย innovationย willย improveย decision- making during the procedure and will in the future provide automation for surgical tasks.

“We believe that AI and augmented reality will soon become the standard in surgical practice, enhancingย efficiency,ย reducing complications,ย andย ultimatelyย improvingย patientย outcomes,”ย said Dr. Rodriguez Navarro. “This technology is designed for a global impact, ensuring that the benefits of advanced surgery reach everyone, everywhere.”

Aboutย Levita

Headquartered in Silicon Valley, Levita Magnetics was founded by innovator and surgeon Dr. Albertoย Rodriguezย Navarro.ย Itsย proprietaryย technologyย isย designed toย advanceย minimallyย invasive surgery. Levita developed the Levita Magnetic Surgical System and MARS, proprietary technologies designed to minimize the footprint of surgery and improve patient outcomes. For more information visit levita.com.

*Based on a retrospective study of 296 patients comparing magnetic liver retraction vs. a conventional liverย retractor inย bariatricย surgery. Patientsย inย theย Magneticย Surgery cohortย hadย significantlyย decreasedย 12- hour post-operative pain scores and hospital length of stay.


Recent Content

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMCโ€™s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integrationโ€”laying the foundation for โ€œAI factoriesโ€ powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
Samsung has launched two new rugged devicesโ€”the Galaxy XCover7 Pro smartphone and the Tab Active5 Pro tabletโ€”designed for high-intensity fieldwork in sectors like logistics, healthcare, and manufacturing. These devices offer military-grade durability, advanced 5G connectivity, and enterprise-ready security with Samsung Knox Vault. Features like hot-swappable batteries, gloved-touch sensitivity, and AI-powered tools enhance productivity and reliability in harsh environments.
Nokia, Digita, and CoreGo have partnered to roll out private 5G networks and edge computing solutions at high-traffic event venues. Using Nokia’s Digital Automation Cloud (DAC) and CoreGoโ€™s payment and access tech, the trio delivers real-time data flow, reliable connectivity, and enhanced guest experience across Finland and international locationsโ€”serving over 2 million attendees to date.
OpenAI is developing a prototype social platform featuring an AI-powered content feed, potentially placing it in direct competition with Elon Musk’s X and Metaโ€™s AI initiatives. Spearheaded by Sam Altman, the project aims to harness user-generated content and real-time interaction to train advanced AI systemsโ€”an approach already used by rivals like Grok and Llama.
AI Pulse: Telecomโ€™s Next Frontier is a definitive guide to how AI is reshaping the telecom landscape โ€” strategically, structurally, and commercially. Spanning over 130 pages, this MWC 2025 special edition explores AIโ€™s growing maturity in telecom, offering a comprehensive look at the technologies and trends driving transformation.

Explore strategic AI pillarsโ€”from AI Ops and Edge AI to LLMs, AI-as-a-Service, and governanceโ€”and learn how telcos are building AI-native architectures and monetization models. Discover insights from 30+ global CxOs, unpacking shifts in leadership thinking around purpose, innovation, and competitive advantage.

The edition also examines connected industries at the intersection of Private 5G, AI, and Satelliteโ€”fueling transformation in smart manufacturing, mobility, fintech, ports, sports, and more. From fan engagement to digital finance, from smart cities to the industrial metaverse, this is the roadmap to telecomโ€™s next eraโ€”where intelligence is the new infrastructure, and telcos become the enablers of everything connected.
In AI in Telecom: Strategic Themes, Maturity, and the Road Ahead, we explore how AI has shifted from buzzword to backbone for global telecom leaders. From AI-native networks and edge inferencing, to domain-specific LLMs and behavioral cybersecurity, this article maps out the strategic pillars, real-world use cases, and monetization models driving the AI-powered telecom era. Featuring CxO insights from Telefรณnica, KDDI, MTN, Telstra, and Orange, it captures the voice of a sector transforming infrastructure into intelligence.

Download Magazine

With Subscription
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top