5G SA and Cellular V2X to reduce collisions – tests by Honda and SoftBank

Softbank, an operator in Japan, and Honda, an auto-company in Japan, started use-case-based testing to minimize collisions between vehicles and pedestrians. They are using 5G Standalone (5G SA) mobile communication system and Cellular V2X communication.
DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

Softbank, an operator in Japan, and Honda, an auto-company in Japan, started use-case-based testing with 5G Standalone and Cellular V2X to minimize collisions between vehicles and pedestrians.

Target Use Cases for 5G Standalone and Cellular V2X


The following are the three use cases for which SoftBank and Honda are conducting technology verifications. The team is utilizing SoftBank’s 5G SA experimental base station installed at Honda’s Takasu Proving Ground in Hokkaido Prefecture and Honda’s identification technology:

Reduce pedestrian collisions that are visible to vehicles

In a scenario where a pedestrian can be seen from the vehicle and when the onboard camera recognizes the danger of a collision, such as when a person enters the road, the car sends an alert to that person’s mobile device directly or via a MEC server straight away.

The pair discussed how this scenario would enable the user to take evasive action to avoid a possible accident with the automobile.

Reduce collisions involving pedestrians who are visible to vehicles - Honda and Softbank
Reduce collisions involving pedestrians who are visible to vehicles – Honda and Softbank
Reduce collisions between vehicles and pedestrians who are not visible

The vehicle queries mobile devices and other vehicles in the vicinity about the presence or absence of a pedestrian in an area with poor visibility, given that a pedestrian cannot be seen from the moving car owing to obstacles such as parked automobiles along roadways.

When the car approaches, the system informs the pedestrian and warns the vehicle about the pedestrian from the user’s mobile device if a pedestrian is present.

When there is a second vehicle in the area with limited sight and a possibility to observe the pedestrian, that car notifies the other vehicle about the pedestrian.

Reduce collisions involving pedestrians who are not visible to vehicles - Honda and Softbank
Reduce collisions involving pedestrians who are not visible to vehicles – Honda and Softbank
Reduce pedestrian collisions by sharing information on areas that are not visible to vehicles

This scenario is intended to illustrate how information from moving vehicles may be directed to the MEC server and used to inform drivers in the area about the poor visibility.

When a vehicle receives the warning and approaches an area with limited visibility, it queries the MEC server for information on pedestrians. The MEC server notifies the vehicle and the person if a pedestrian is detected.

This scenario may be used to transmit information on an area with poor visibility to cars that do not have a camera-based identification capability, ensuring that there are no collisions between vehicles and pedestrians regardless of whether cars have recognition capabilities.

Reduce collisions involving pedestrians by sharing information about areas not visible to vehicles
Reduce collisions involving pedestrians by sharing information about areas not visible to vehicles – Honda and Softbank

5G Technologies and Standards

5G Standalone

Softbank and Honda plan to use standalone 5G technology for the above use cases. 5G SA combines new 5G dedicated core equipment and 5G base stations, in contrast to the traditional standalone system using 4G core equipment and combining it with 5G base stations.

Multi-access Edge Computing (MEC)

MEC will be used to optimize and accelerate communications compared to cloud servers by putting data processing operations in places close to terminals, such as base stations.

3GPP Standard

The use cases will leverage the 3GPP standards for vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-network, and vehicle-to-pedestrian communications.

Softbank and Honda V2X partnership

By establishing a 5G experimental base station at the Takasu Proving Grounds, SoftBank and Honda had already been collaborating on 5G-based connected vehicle technology verification.

Softbank and Honda plan to use network technology that will connect pedestrians and vehicles to create a cooperative society where people of all ages may move freely while enjoying mobility safely and with complete peace of mind. Softbank and Honda will collaborate to verify the 5G SA network with a view to linking it with cellular V2X and plan to complete it before the end of fiscal 2021.


Recent Content

At MWC 2025, Qualcomm and Nokia Bell Labs demonstrated how AI-driven wireless networks can achieve multi-vendor interoperability without sharing proprietary data. Their AI-enhanced channel state feedback (CSF) technology optimizes 5G performance, improving network efficiency, signal strength, and reliability. With implications for 6G, Open RAN, and private 5G, this breakthrough is reshaping the future of AI-powered wireless communications.
Nokia introduces MX Context, an AI-powered sensor fusion solution that integrates multi-modal IoT data with private 5G networks for enhanced automation, efficiency, and worker safety. By eliminating data silos, MX Context provides real-time situational awareness, optimizes asset tracking, and enables low-code industrial automation. Learn how this AI-driven innovation is transforming Industry 4.0.
In 2025, the mobile industry is set to surpass 1 billion IoT connections while advancing 5G standalone, AI, quantum security, and mobile identity services. At MWC25 Barcelona, GSMA experts will discuss eSIM standardization, network APIs, private 5G, and AI-powered security. Discover how non-terrestrial networks (NTN) and post-quantum cryptography will shape telecom’s future.
A new GSMA Intelligence report reveals that mobile technologies and 5G will contribute $11 trillion to global GDP by 2030, transforming key industries like manufacturing, financial services, automotive, and aviation. As Connected Industries at MWC25 showcases AI-driven automation, IoT advancements, and smart city infrastructures, experts highlight why collaboration between policymakers, network operators, and enterprises is crucial to unlocking the full potential of digital transformation.
As telcos seek growth beyond connectivity, a $400 billion enterprise opportunity awaits. At MWC25’s Connected Industries, leaders from NVIDIA, 5GAA, and Accenture will explore how 5G, AI, IoT, and private networks are reshaping industries like manufacturing, fintech, smart mobility, and entertainment. Learn why GSMA’s Connected Communities is key to unlocking new revenue streams and driving digital transformation.
The private network market is expanding rapidly as enterprises scale their private 5G/LTE deployments across industries like utilities, manufacturing, and oil & gas. Companies that began with single-site proofs of concept are now rolling out private networks on a larger scale, tackling challenges in security, IT integration, and SIM provisioning. Specialized vendors like OneLayer play a crucial role in streamlining deployment, enhancing security, and enabling seamless IT and OT ecosystem integration. Learn how private networks are evolving and the key factors driving adoption.

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top