Private Network Check Readiness - TeckNexus Solutions

NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMCโ€™s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integrationโ€”laying the foundation for โ€œAI factoriesโ€ powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout
Image Credit: Nvidia

NVIDIA Builds Domestic AI Infrastructure with TSMC, Foxconn, and Wistron

NVIDIA has officially announced a major expansion of its AI infrastructure footprintโ€”this time on U.S. soil. For the first time in the companyโ€™s history, NVIDIA will manufacture its AI supercomputers and next-generation semiconductors entirely within the United States.


In collaboration with manufacturing giants TSMC, Foxconn, and Wistron, NVIDIA is establishing over one million square feet of dedicated production capacity in Arizona and Texas. This move supports not just chip manufacturing but the entire lifecycle of AI supercomputer developmentโ€”from silicon fabrication and testing to packaging and system integration.

The initiative signals a fundamental shift in the AI supply chain and reflects growing pressure for technological sovereignty, supply chain resilience, and the onshoring of strategic infrastructure.

NVIDIA Blackwell AI Chips Begin Production in Arizona with Full Supercomputer Builds in Texas

NVIDIAโ€™s new Blackwell chipsetsโ€”tailored for AI model training and inferenceโ€”have officially entered production at TSMCโ€™s advanced node facilities in Phoenix, Arizona. These chips are at the heart of NVIDIAโ€™s next-generation computing systems, designed to handle the computational demands of modern large language models (LLMs) and Generative AI.

Down the supply chain, two major supercomputer manufacturing sites are being launched: one in Houston, operated by Foxconn, and another in Dallas, operated by Wistron. These factories will assemble, test, and integrate the full AI computing platforms powered by the Blackwell architecture.

Mass production is expected to scale significantly over the next 12โ€“15 months, with NVIDIA signaling that these plants will play a pivotal role in meeting global demand for AI processing power.

Building a Domestic AI Supply Chainโ€”From Silicon to System Integration

NVIDIA is addressing more than just chip production. The entire value chainโ€”from chip packaging to end-to-end testingโ€”is being localized. The company is partnering with Amkor and SPIL in Arizona for backend manufacturing processes, which are typically outsourced to Asia. These partnerships support the packaging of advanced chipsets and ensure seamless integration into full-stack AI supercomputers.

By 2029, NVIDIA aims to manufacture up to $500 billion worth of AI infrastructure in the U.S., a bold strategy that emphasizes economic impact alongside technical advancement. It also showcases a commitment to national priorities such as supply chain independence, high-tech job creation, and domestic innovation.

NVIDIAโ€™s AI Factories Signal a Shift in Global Tech Infrastructure

NVIDIA describes these new manufacturing sites as โ€œAI factoriesโ€โ€”data center-grade facilities built solely for AI workloads. Unlike traditional compute environments, these factories are optimized for real-time data processing, model training, inference, and advanced analytics.

Tens of such gigawatt-scale AI factories are expected to be built in the coming years to support use cases across sectors like healthcare, financial services, automotive, and telecom.

These facilities will be vital for delivering high-throughput AI capabilities to power applications like digital twins, autonomous systems, virtual assistants, and generative AI tools.

NVIDIA Uses Omniverse and Robotics to Power Smart AI Factories

To streamline operations, NVIDIA plans to use its own technology stack to design and run these factories. Using the NVIDIA Omniverse, the company will build high-fidelity digital twins of its production facilities to simulate workflows, test equipment placement, and optimize throughput before physical deployment.

Additionally, NVIDIA Isaac GR00T, the company’s robotics platform, will automate large portions of the manufacturing process. These smart robots will handle component assembly, automated inspection, and logistics, reducing error margins and increasing productivity across sites.

This integration of AI, robotics, and automation signals a new standard in factory operations, merging digital infrastructure with physical manufacturing in real time.

U.S. AI Manufacturing Expansion Fuels Jobs and Global Tech Leadership

NVIDIAโ€™s U.S.-based production is expected to generate hundreds of thousands of jobs, from factory technicians to software engineers. It also strengthens the U.S. position in the global race to dominate AI, semiconductors, and advanced computing.

According to Jensen Huang, Founder and CEO of NVIDIA, โ€œThe engines of the worldโ€™s AI infrastructure are being built in the United States for the first time. Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain, and boosts our resiliency.โ€

A Strategic Move That Sets the Tone for the AI-First Economy

NVIDIAโ€™s announcement isnโ€™t just about moving manufacturing closer to homeโ€”itโ€™s a signal to the broader tech ecosystem. As AI becomes foundational to everything from drug discovery and cybersecurity to smart cities and self-driving vehicles, companies will need more localized, secure, and scalable AI infrastructure.

By integrating semiconductor manufacturing with edge computing, digital twins, and AI software frameworks under one national footprint, NVIDIA is building a comprehensive blueprint for the AI-powered future.


Recent Content

TELUS moved beyond experiments to enterprise adoption: 57,000 employees actively use gen AI, more than 13,000 custom AI solutions are in production, and 47 large-scale solutions have generated over $90 million in benefits to date. Time savings exceed 500,000 hours, driven by an average of roughly 40 minutes saved per AI interaction. The scale is notable: Fuel iX now processes on the order of 100 billion tokens per month, a signal that the platform is embedded in day-to-day work rather than isolated to innovation teams. TELUS designed for trust from the start: its Fuel iXpowered customer support tool achieved ISO 31700-1 Privacy by Design certification, a first for a gen AI solution.
MWC25 Las Vegas is the premier North American event for CIOs and IT leaders, offering real-world insights on 5G, AI, IoT, private networks, and edge computing. With industry leaders from IBM, Qualcomm, T-Mobile, and more, the event focuses on actionable strategies for enterprise transformation.
This article explores the challenges data analysts face due to time-consuming data wrangling, hindering strategic analysis. It highlights how fragmented data, quality issues, and compliance demands contribute to this bottleneck. The solution proposed is AI-powered automation for tasks like data extraction, cleansing, and reporting, freeing analysts. Implementing AI offers benefits such as increased efficiency, improved decision-making, and reduced risk, but requires careful planning. The article concludes that embracing AI while prioritizing data security and privacy is crucial for staying competitive.
Kyndryls’ three-year, $2.25 billion plan signals an aggressive push to anchor AI-led infrastructure modernization in India’s digital economy and to scale delivery across regulated industries. The $2.25 billion commitment, anchored by the Bengaluru AI lab and tied to governance and skilling programs, should accelerate enterprise-grade AI and hybrid modernization across India. Expect more co-created reference architectures, deeper public-sector engagements, and tighter integration with network and cloud partners through 2026. For telecom and large enterprises, this is a timely opportunity to industrialize AI, modernize core platforms, and raise operational resilience provided programs are governed with clear metrics, strong security, and a pragmatic path from pilot to production.
AstraZeneca, Ericsson, Saab, SEB, and Wallenberg Investments have launched Sferical AI to build and operate a sovereign AI supercomputer that anchors Sweden’s next phase of industrial digitization. Sferical AI plans to deploy two NVIDIA DGX Super PODs based on the latest DGX GB300 systems in Linkping. The installation will combine 1,152 tightly interconnected GPUs, designed for fast training and fine-tuning of large, complex models. Sovereign infrastructure addresses data residency, IP protection, and regulatory alignment, while reducing exposure to public cloud capacity swings. For Swedish and European firms navigating GDPR, NIS2, and sector-specific rules like DORA in finance, a trusted, high-performance platform can accelerate AI adoption without compromising compliance.
Apple’s fall software updates introduce admin-grade switches to govern how corporate users access ChatGPT and other external AI services across iPhone, iPad, and Mac. Apple is enabling IT teams to explicitly allow or block the use of an enterprise-grade ChatGPT within Apple Intelligence, with a design that treats OpenAI as one of several possible external providers. Practically, that means admins can set policy to route requests either to Apples own stack or to a sanctioned third-party provider, and disable external routing entirely when required.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025