NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMC’s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integration—laying the foundation for “AI factories” powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout
Image Credit: Nvidia

NVIDIA Builds Domestic AI Infrastructure with TSMC, Foxconn, and Wistron

NVIDIA has officially announced a major expansion of its AI infrastructure footprint—this time on U.S. soil. For the first time in the company’s history, NVIDIA will manufacture its AI supercomputers and next-generation semiconductors entirely within the United States.


In collaboration with manufacturing giants TSMC, Foxconn, and Wistron, NVIDIA is establishing over one million square feet of dedicated production capacity in Arizona and Texas. This move supports not just chip manufacturing but the entire lifecycle of AI supercomputer development—from silicon fabrication and testing to packaging and system integration.

The initiative signals a fundamental shift in the AI supply chain and reflects growing pressure for technological sovereignty, supply chain resilience, and the onshoring of strategic infrastructure.

NVIDIA Blackwell AI Chips Begin Production in Arizona with Full Supercomputer Builds in Texas

NVIDIA’s new Blackwell chipsets—tailored for AI model training and inference—have officially entered production at TSMC’s advanced node facilities in Phoenix, Arizona. These chips are at the heart of NVIDIA’s next-generation computing systems, designed to handle the computational demands of modern large language models (LLMs) and Generative AI.

Down the supply chain, two major supercomputer manufacturing sites are being launched: one in Houston, operated by Foxconn, and another in Dallas, operated by Wistron. These factories will assemble, test, and integrate the full AI computing platforms powered by the Blackwell architecture.

Mass production is expected to scale significantly over the next 12–15 months, with NVIDIA signaling that these plants will play a pivotal role in meeting global demand for AI processing power.

Building a Domestic AI Supply Chain—From Silicon to System Integration

NVIDIA is addressing more than just chip production. The entire value chain—from chip packaging to end-to-end testing—is being localized. The company is partnering with Amkor and SPIL in Arizona for backend manufacturing processes, which are typically outsourced to Asia. These partnerships support the packaging of advanced chipsets and ensure seamless integration into full-stack AI supercomputers.

By 2029, NVIDIA aims to manufacture up to $500 billion worth of AI infrastructure in the U.S., a bold strategy that emphasizes economic impact alongside technical advancement. It also showcases a commitment to national priorities such as supply chain independence, high-tech job creation, and domestic innovation.

NVIDIA’s AI Factories Signal a Shift in Global Tech Infrastructure

NVIDIA describes these new manufacturing sites as “AI factories”—data center-grade facilities built solely for AI workloads. Unlike traditional compute environments, these factories are optimized for real-time data processing, model training, inference, and advanced analytics.

Tens of such gigawatt-scale AI factories are expected to be built in the coming years to support use cases across sectors like healthcare, financial services, automotive, and telecom.

These facilities will be vital for delivering high-throughput AI capabilities to power applications like digital twins, autonomous systems, virtual assistants, and generative AI tools.

NVIDIA Uses Omniverse and Robotics to Power Smart AI Factories

To streamline operations, NVIDIA plans to use its own technology stack to design and run these factories. Using the NVIDIA Omniverse, the company will build high-fidelity digital twins of its production facilities to simulate workflows, test equipment placement, and optimize throughput before physical deployment.

Additionally, NVIDIA Isaac GR00T, the company’s robotics platform, will automate large portions of the manufacturing process. These smart robots will handle component assembly, automated inspection, and logistics, reducing error margins and increasing productivity across sites.

This integration of AI, robotics, and automation signals a new standard in factory operations, merging digital infrastructure with physical manufacturing in real time.

U.S. AI Manufacturing Expansion Fuels Jobs and Global Tech Leadership

NVIDIA’s U.S.-based production is expected to generate hundreds of thousands of jobs, from factory technicians to software engineers. It also strengthens the U.S. position in the global race to dominate AI, semiconductors, and advanced computing.

According to Jensen Huang, Founder and CEO of NVIDIA, “The engines of the world’s AI infrastructure are being built in the United States for the first time. Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain, and boosts our resiliency.”

A Strategic Move That Sets the Tone for the AI-First Economy

NVIDIA’s announcement isn’t just about moving manufacturing closer to home—it’s a signal to the broader tech ecosystem. As AI becomes foundational to everything from drug discovery and cybersecurity to smart cities and self-driving vehicles, companies will need more localized, secure, and scalable AI infrastructure.

By integrating semiconductor manufacturing with edge computing, digital twins, and AI software frameworks under one national footprint, NVIDIA is building a comprehensive blueprint for the AI-powered future.


Recent Content

Vodafone is expanding its role in the UK smart metering upgrade by providing fixed-line connectivity between energy suppliers and the Data Service Platform (DSP). This move complements its existing mobile network role and positions Vodafone as a critical telecom partner in the UK’s digital energy transition, helping to advance national net-zero and smart grid goals.
AI agents are transforming enterprise operations, acting as autonomous digital coworkers that enhance productivity, reduce costs, and support strategic decision-making. With a projected 327% growth by 2027, enterprises must adopt AI agents to remain competitive in an AI-first economy.
Financial institutions are adopting artificial intelligence (AI) to navigate complex regulations, transforming compliance into a competitive advantage. AI’s ability to process vast amounts of data quickly is proving transformative in meeting these challenges, automating tasks and improving efficiency. This shift allows compliance professionals to focus on strategic initiatives while ensuring regulatory compliance.
Meta projects its generative AI technologies to generate substantial revenue, forecasting between $460 billion to $1.4 trillion by 2035. This growth is supported by strategic monetization and robust investments in AI development, despite facing significant legal and ethical challenges.
The telecom sector is evolving from 5G to 6G, emphasizing AI-driven solutions, software-centric strategies, and open-source collaboration. This transition aims to enhance network management and user experiences with technologies like AR, VR, and more efficient data handling.
Salesforce is addressing AI inconsistencies in enterprises with its new concept of Enterprise General Intelligence (EGI) and innovative tools such as SIMPLE and CRMArena. These initiatives aim to enhance the reliability and applicability of AI across business operations.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top