Private Network Check Readiness - TeckNexus Solutions

Vodafone and Porsche deploys hybrid private 5G network in Europe

Vodafone Business and Porsche announced they constructed Europe's first hybrid private 5G network. The coverage stretches over 700 hectares and allows secure LTE and 5G connectivity from both public and private networks on one site. Porsche 5G network is deployed at the Nardo Technical Center (NTC), situated in southern Italy's Apulian region.

Vodafone Business, a leading European enterprise provider of the UK operator Vodafone, announced they constructed Europe’s first hybrid private 5G network. The coverage stretches over 700 hectares and allows secure LTE and 5G connectivity from both public and private networks on one site. This groundbreaking development brings unparalleled scale to users looking for reliable mobile data connections in their area.


Porsche, owned by Volkswagen, recently announced the deployment of their 5G network at the Nardò Technical Center (NTC), situated in southern Italy’s Apulian region. This vast location has around 20 tracks for testing vehicles and covers 700 hectares – an area equaling seven million square meters. To put that into perspective, Nokia previously revealed “Europe’s biggest industrial private 5G network,” however, Porsche’s property outweighs it significantly if you look at the comparison side-by-side.

These are not perfectly equal 5G installations. One is all private edge, while the other is a 50/50 blend between private infrastructure and the public network (which Vodafone does not own in France). It’s still unclear how much of the NTC site is covered by private cellular, but it must be completely covered by both public and private networks. Additionally, one has to ask if this 5G installation at the NTC site can truly fall under “industrial,” as mentioned with the ASN project?

The NTC proving ground is an invaluable asset for the global automotive industry, aiding in the development and validation of cutting-edge intelligent and connected vehicles. The LTE/5G setup facilitates vehicle-to-infrastructure communication, as well as vehicle-to-vehicle features – both essential to industrial 5G projects. Highly automated driving functions and fully automated vehicles are also possible with this technology, a remarkable concept that deserves closer consideration.

By utilizing the private 5G edge part of their new hybrid infra-combo, Porsche Engineering is able to provide its automotive customers with a “real-time communication network” that offers optimized performance in areas such as security and reliability. Moreover, the public side of this infrastructure will enable local citizens access to faster 5G networks – displaying how new technologies can benefit everyone involved. This unique combination promises reduced delays, wider bandwidths, and much quicker deployment times overall.

It appears that NTC could maximize the benefits of a local 5G expansion for customer-oriented, data-heavy applications. The phrase ‘hybrid’ probably relates to a shared core server between private access networks and RAN systems based onsite. Vodafone mentioned this project as part of their collaboration with Porsche Group, which acquired the site in 2012; they previously installed standalone 5G services at a development center in Weissach, Germany, last year.

In 2019, the NTC’s main 12.6-kilometer track underwent a renovation to include fiber optic technology for “rapid data transfer and correct road indicators that validate self-driving”. Porsche hired Ericsson for one of its first private 5G networks in Leipzig, Germany, which was facilitated by an enterprise 5G permit from German regulator BNetzA within the 3.7-3.8 GHz ‘vertical’ spectrum band. Unfortunately, there is no current information about what company will be partnering with them on this new project at the NTC yet.

Peter Schafer, CEO of Porsche Engineering, expressed his commitment to driving technologies forward so that customers can meet the demands of tomorrow’s mobility. The new 5G network provided by NTC offers its patrons an improved infrastructure for developing and testing autonomous vehicles with intelligent connectivity.

Vinod Kumar, CEO of Vodafone Business, highlighted the potential for private 5G networks to revolutionize businesses. He stated, “Private 5G networks can open up possibilities and enable companies to rethink their operations. In Nardo, private 5G is enabling a space that looks like an actual smart city with consistent coverage both onsite and off-site – paving the way for applications that will completely transform transportation and mobility.”


Recent Content

Google will pay a US$35.8 million (A$55 million) penalty and change how it structures Android default search agreements with Australian carriers and OEMs. The Australian Competition and Consumer Commission (ACCC) alleged that Googles contracts with Telstra and Optus from December 2019 to March 2021 blocked rival search engines on carrier-sold Android devices via platform-wide default settings and revenue-sharing incentives. Google admitted the conduct likely lessened competition and agreed to court-enforceable undertakings to remove restrictions that mandated Google Search as the exclusive, out-of-the-box option across search access points (browser defaults, widgets, and in-phone settings).
The 4.44.94 GHz range offers the cleanest mix of technical performance, policy feasibility, and global alignment to move the U.S. ahead in 6G. Midband is where 6G will scale, and 4 GHz sits in the sweet spot. A contiguous 500 MHz block supports wide channels (100 MHz+), strong uplink, and macro coverage comparable to C-Band, but with more spectrum headroom. That translates into better spectral efficiency and a lower total cost per bit for nationwide deployments while still enabling dense enterprise and edge use cases.
Palo Alto Networks PAN-OS 12.1 Orion steps into this gap with a quantum-ready roadmap, a unified multicloud security fabric, expanded AI-driven protections and a new generation of next-generation firewalls (NGFWs) designed for data centers, branches and industrial edge. The release also pushes management into a single operational plane via Strata Cloud Manager, targeting lower operating cost and faster incident response. PAN-OS 12.1 automatically discovers workloads, applications, AI assets and data flows across public cloud and hybrid environments to eliminate blind spots. It continuously assesses posture, flags misconfigurations and exposures in real time and deploys protections in one click across AWS, Azure and Google Cloud.
Beijing’s first World Humanoid Robot Games is more than a spectacle. It is a live systems trial for embodied AI, connectivity, and edge operations at scale. Over three days at the Beijing National Speed Skating Oval, more than 500 humanoid robots from roughly 280 teams representing 16 countries are competing in 26 events that span athletics and applied tasks, from soccer and boxing to medicine sorting and venue cleanup. The games double as a staging ground for 5G-Advanced (5G-A) capabilities designed for uplink-intensive, low-latency, high-reliability robotics traffic. Indoors, a digital system with 300 MHz of spectrum delivers multi-Gbps peaks and sustains uplink above 100 Mbps.
stc 5G powered the Esports World Cup with 1,295 antennas and 285 MHz spectrum, delivering broadcast-grade uplink, low latency, and reliable performance.
More than $14 billion has been invested across the CBRS stacklicenses, RAN, devices, infrastructure, sensors, and software. Over 420,000 CBRS radio nodes (CBSDs) are in service. The device ecosystem is broad: Apple and Samsung ship n48-capable handsets; industrial and FWA suppliers support n48 CPEs and routers; Ericsson, Nokia, Samsung, JMA Wireless and others provide radio and DAS. This is not a pilot; it is production infrastructure. Refarming would force replacement or retuning of hundreds of thousands of base stations and millions of end devices, plus upgrades to SAS integrations and enterprise control planes.
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025