6G: The Role of Brain-Inspired Computing by King’s Engineers

6G Technology: The Role of Brain-Inspired Computing by King's Engineers" highlights the groundbreaking research that aims to revolutionize wireless communications. By using neuromorphic computing, the research seeks to provide faster, more energy-efficient, and AI-integrated 6G telecommunications, potentially transforming industries such as mobile healthcare, telecommunications, and robotics.
Engineers from King's College Use Brain-Like Computing for Better 6G Technology

Two engineers from King’s College, London, are venturing into a promising research project that focuses on neuromorphic computing, a form of computing inspired by the functioning of the human brain, to enhance wireless technology drastically. This initiative is backed by significant scientific entities – the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the National Science Foundation (NSF) in the United States, indicating the importance and potential of the project.


The fundamental goal of this research is to significantly enhance the speed and energy efficiency of computing and wireless telecommunications. By achieving these improvements, there will be a major positive impact across various industries, especially mobile healthcare, telecommunications, and robotics. The approach taken here emphasizes a higher level of artificial intelligence (AI) integration into wireless communications, offering a vast array of possibilities in service improvements and user experience enhancements.

The primary team leading this initiative consists of an international collaboration of high-profile academics. Professor Osvaldo Simeone and Dr. Bipin Rajendran from the Department of Engineering at King’s College are working in conjunction with Professor Vincent Poor from Princeton University. They are focusing on how neuromorphic computing can be effectively leveraged for the more efficient delivery of information across telecommunications networks. This could potentially underpin the development of revolutionary services and applications in the upcoming 6G networks.

As highlighted by Professor Simeone, the recent widespread implementation of 5G has already marked a significant transition in telecommunications systems. The global system is evolving to facilitate the transfer of intelligence between machines better. Despite this progress, Simeone pointed out that current systems still encounter limitations. In particular, conventional communication systems are built on a framework of transmitting and storing information in ‘bits,’ which restricts their ability to adapt to new situations or optimize their resource consumption based on the specific nature of the information being exchanged.

Dr. Rajendran further explained the characteristics of neuromorphic systems. These systems are engineered to mimic the behavior of neural networks found in the human brain. One of the key techniques used in this approach involves Spiking Neural Networks (SNNs) that transmit information through the generation of ‘spikes.’ This operational model allows for highly efficient, event-driven computations as it processes data only when necessary.

The team believes that neuromorphic computing has several distinct advantages that make it superior to traditional computing. Unlike conventional computers, these neuromorphic systems are designed to learn and adapt in real time. Additionally, they are noted for their exceptional energy efficiency. When these factors are combined, they present a compelling case for the incorporation of neuromorphic computing within telecommunications. The introduction of this technology in mobile devices could lead to the provision of sophisticated AI tools, better services, and a much more customized experience based on user requirements.

To push this frontier technology forward, Professor Simeone and Dr. Rajendran have engaged in collaborative efforts with renowned industrial partners, including Intel Labs, NVIDIA, and AccelerComm. With the collective knowledge and experience of these industrial leaders, the King’s researchers aim to explore the core principles, algorithms, and design techniques involved in the creation of neuromorphic communications, pushing the boundaries of what’s currently achievable in telecommunications technology.


Recent Content

The article explores how 5G, AI, and AR/VR are transforming a range of vertical industries, including manufacturing, transportation, energy and utilities, healthcare, education, retail, mining, agriculture/agritech, and smart cities. It highlights the benefits of these technologies, including increased efficiency and productivity, improved customer satisfaction, and new opportunities for growth. The article also discusses the challenges associated with these technologies, including privacy and security concerns and accessibility issues. The article concludes by emphasizing the importance of inclusive technologies and services, and the responsible and ethical use of these technologies, in order to ensure that the benefits of 5G, AI, and AR/VR are accessible to all and used for the betterment of society.
The private network revolution is transforming how businesses secure their operations and data by leveraging connectivity and emerging technologies. These dedicated private networks offer enhanced security, improved network performance, scalability, better control, and support for edge computing, network slicing, and IoT applications. As a result, businesses can embrace Industry 4.0, leading to increased efficiency and automation. While there are challenges to consider, such as cost, regulatory requirements, and integration with existing infrastructure, businesses are adopting these technologies and securing their future in the digital landscape.
Edge computing is a rapidly evolving technology that processes data near its source, enabling faster decision-making, reduced latency, and improved data security. This new technology, coupled with 5G, is unlocking new use cases for IoT applications across various industries, including industrial automation, autonomous vehicles, smart cities, healthcare, retail, and AR/VR. However, businesses must address the challenges and considerations related to infrastructure, security, integration, and talent to implement and benefit from edge computing solutions successfully.
The advent of 5G technology is set to unlock the full potential of the Internet of Things (IoT) by providing the necessary infrastructure to support a vast network of connected devices with ultra-low latency, high bandwidth, and enhanced reliability. This article discusses the impact of 5G on IoT, explores the benefits of 5G-enabled IoT solutions, and highlights innovative use cases across industries. However, businesses must address challenges such as infrastructure investment, security and privacy, interoperability and standardization, and spectrum allocation to implement and benefit from 5G IoT solutions successfully.
The digital twin revolution is changing how businesses optimize their operations by using virtual models to simulate, predict, and enhance real-world processes. Digital twins provide numerous benefits, such as enhanced performance and efficiency, predictive maintenance, improved decision-making, reduced time-to-market, and better collaboration. With use cases across industries like manufacturing, energy and utilities, transportation and logistics, healthcare, and smart cities, digital twin technology is becoming increasingly important for businesses. However, organizations must address challenges related to data quality, integration, security, cost, and expertise to implement and benefit from digital twin technology successfully.
AI-powered platforms like ChatGPT are enabling businesses to streamline operations and improve customer experiences by automating routine tasks, optimizing processes, and extracting valuable insights from data. Applications of ChatGPT include customer support, content generation, personalized marketing, process automation, and natural language processing. Benefits of implementing AI-powered platforms encompass enhanced productivity, cost savings, improved customer experiences, scalability, and data-driven decision-making. However, challenges and considerations in implementing AI-powered platforms involve data privacy and security, integration with existing systems, skill requirements, ethical considerations, and maintenance and continuous improvement. By addressing these challenges, businesses can harness the power of AI-powered automation to drive innovation and enhance customer experiences.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top