Bloomberg AI Researchers Mitigate Risks of “Unsafe” RAG LLMs and GenAI in Finance

There's immense pressure for companies in every industry to adopt AI, but not everyone has the in-house expertise, tools, or resources to understand where and how to deploy AI responsibly. Bloomberg hopes this taxonomy – when combined with red teaming and guardrail systems – helps to responsibly enable the financial industry to develop safe and reliable GenAI systems, be compliant with evolving regulatory standards and expectations, as well as strengthen trust among clients.
Bloomberg AI Researchers Mitigate Risks of "Unsafe" RAG LLMs and GenAI in Finance

Two new academic papers reflect Bloomberg’s commitment to transparent, trustworthy, and responsible AI


From discovering that retrieval augmented generation (RAG)-based large language models (LLMs) are less “safe” to introducing an AI content risk taxonomy meeting the unique needs of GenAI systems in financial services, researchers across Bloomberg’s AI Engineering group, Data AI group, and CTO Office aim to help organizations deploy more trustworthy solutions.

They have published two new academic papers that have significant implications for how organizations deploy GenAI systems more safely and responsibly, particularly in high-stakes domains like capital markets financial services.

In RAG LLMs are Not Safer: A Safety Analysis of Retrieval-Augmented Generation for Large Language Models,” Bloomberg researchers found that RAG, a widely-used technique that integrates context from external data sources to enhance the accuracy of LLMs, can actually make models less “safe” and their outputs less reliable.

To determine whether RAG-based LLMs are safer than their non-RAG counterparts, the authors used more than 5,000 harmful questions to assess the safety profiles of 11 popular LLMs, including Claude-3.5-Sonnet, Llama-3-8B, Gemma-7B, and GPT-4o. Comparing the resulting behaviors across 16 safety categories, the findings demonstrate that there were large increases in unsafe responses under the RAG setting. In particular, they discovered that even very “safe” models, which refused to answer nearly all harmful queries in the non-RAG setting, become more vulnerable in the RAG setting [see Figure 3 from the paper].

The change of risk profile from non-RAG to RAG is model dependent. (Figure 3, RAG LLMs are Not Safer: A Safety Analysis of Retrieval-Augmented Generation for Large Language Models, arXiv, 2025.)

This research clearly underscores the need for anyone using RAG LLMs to assess whether their models have any hidden layers of vulnerability and what additional safeguards they might need to add.

“This counterintuitive finding has far-reaching implications given how ubiquitously RAG is used in GenAI applications such as customer support agents and question-answering systems. The average Internet user interacts with RAG-based systems daily,” explained Dr. Amanda Stent, Bloomberg’s Head of AI Strategy & Research in the Office of the CTO. “AI practitioners need to be thoughtful about how to use RAG responsibly, and what guardrails are in place to ensure outputs are appropriate. Our research offers a framework for approaching that so others can evaluate their own solutions and identify any potential blind spots.”

In a related paper, “Understanding and Mitigating Risks of Generative AI in Financial Services,” Bloomberg’s researchers examined how GenAI is being used in capital markets financial services and found that existing general purpose safety taxonomies and guardrail systems fail to account for domain-specific risks.

To close this gap, they introduced a new AI content risk taxonomy that meets the needs of real-world GenAI systems for financial services. It goes beyond what may be addressed by general-purpose safety taxonomies and guardrail systems by addressing risks specific to the financial sector such as confidential disclosure, counterfactual narrative, financial services impartiality, and financial services misconduct.

“There have been strides in academic research addressing toxicity, bias, fairness, and related safety issues for GenAI applications for a broad consumer audience, but there has been significantly less focus on GenAI in industry applications, particularly in financial services,” said David Rabinowitz, Technical Product Manager for AI Guardrails at Bloomberg.

[See Table 1 from the paper]

The categories in Bloomberg’s AI content safety taxonomy for financial services. (Table 1, Understanding and Mitigating Risks of Generative AI in Financial Services, 2025.)

“There’s immense pressure for companies in every industry to adopt AI, but not everyone has the in-house expertise, tools, or resources to understand where and how to deploy AI responsibly,” said Dr. Sebastian Gehrmann, Bloomberg’s Head of Responsible AI. “Bloomberg hopes this taxonomy – when combined with red teaming and guardrail systems – helps to responsibly enable the financial industry to develop safe and reliable GenAI systems, be compliant with evolving regulatory standards and expectations, as well as strengthen trust among clients.”

The RAG safety paper will be presented at the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL 2025) in Albuquerque, New Mexico later this week. The AI risk taxonomy paper will be presented at the ACM Conference on Fairness, Accountability, and Transparency (FAccT) in Athens, Greece in June. For more details, read the Tech At Bloomberg blog post and both papers:

About AI at Bloomberg
Since 2009, Bloomberg has been building and using artificial intelligence (AI) in the finance domain – including machine learning (ML), natural language processing (NLP), information retrieval (IR), time-series analysis, and generative models – to help process and organize the ever-increasing volume of structured and unstructured financial information. With this technology, Bloomberg is developing new ways for financial professionals and business leaders to derive valuable intelligence and actionable insights from high-quality financial information and make more informed business decisions. Learn more about Bloomberg’s AI solutions at www.bloomberg.com/AIatBloomberg.

About Bloomberg
Bloomberg is a global leader in business and financial information, delivering trusted data, news, and insights that bring transparency, efficiency, and fairness to markets. The company helps connect influential communities across the global financial ecosystem via reliable technology solutions that enable our customers to make more informed decisions and foster better collaboration. For more information, visit Bloomberg.com/company or request a demo.


Recent Content

At MWC 2025 Keynote 10: Innovation in Action, top industry leaders discussed how AI is transforming media, journalism, and enterprise automation. Featuring Jessica Sibley (TIME), Nicholas Johnston (Axios), and Bret Taylor (Sierra), the session explored AI-powered newsrooms, the ethical implications of AI-driven content, and the rise of AI agents in business operations. Learn how AI is reshaping the future of work and media while maintaining human oversight and editorial integrity.
At MWC 2025 Keynote 9: Technology, Climate Change & Justice, top leaders explored how AI, business leadership, and innovation can address the climate crisis. Featuring Leah Seligmann (The B Team), Ami Badani (Arm), Anna Borg (Vattenfall), and Peter Sarlin (AMD Silo AI), discussions focused on AI’s rising energy demands, sustainable business models, and corporate responsibility. Discover key insights on how technology can be a force for climate action and environmental justice.
At MWC 2025 Keynote 8: Global Shifts, industry experts will analyze how technology, AI, and semiconductor advancements are reshaping global power structures. As the U.S.-China tech rivalry intensifies, this session will explore its economic, political, and security implications. Featuring Keyu Jin (Harvard University), Jerry Sheehan (OECD), and Gregory C. Allen (CSIS), moderated by Jason Karaian (The New York Times).
At MWC 2025 Keynote 7: Tech Game Changers, industry pioneers including Peggy Johnson (Agility Robotics), Yuanqing Yang (Lenovo), Naveen Rao (Databricks), Arthur Mensch (Mistral AI), and Kate Ryder (Maven Clinic) shared insights on AI, robotics, and digital transformation. Key topics included humanoid robotics, AI-driven UI, healthcare innovation, and enterprise automation. Discover how AI, data intelligence, and open-source models are revolutionizing industries worldwide.
Join Scott Galloway—entrepreneur, bestselling author, NYU Stern School of Business marketing professor, and globally acclaimed podcaster—for an incisive and thought-provoking session at MWC 2025. Delve into some of our time’s most pressing cultural, social, and economic challenges. Such as the transformative economic impact of artificial intelligence, the intensifying geopolitical tensions reshaping the global landscape, and the profound effects of social media on mental health. 
AI is reshaping the world—transforming business, governance, and human interactions while raising critical questions about ethics, security, and digital equity. At MWC 2025, global AI pioneers, including Ray Kurzweil, Vilas Dhar, and industry leaders, will discuss AI’s role in automation, human augmentation, and the future of work. Join this thought-provoking keynote to explore how we can harness AI responsibly for an inclusive, innovative, and sustainable future.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top