Federated Wireless and AWS Collaborate to deploy private 5G network at California Polytechnic State University

Federated Wireless and Amazon Web Services (AWS) to deploy private wireless at California Polytechnic State University (Cal Poly) to support the universityโ€™s 5G innovation network. The deployment will increase research capabilities, enhance bandwidth, and advance connectivity across the campus of San Luis Obispo, California.
Federated Wireless and AWS Collaborate to deploy private 5G network at California Polytechnic State University - TeckNexus

Federated Wireless announced it is working with Amazon Web Services (AWS) on a private wireless deployment with California Polytechnic State University (Cal Poly) to support the universityโ€™s 5G innovation network. The deployment will increase research capabilities, enhance bandwidth and advance connectivity across the San Luis Obispo, California, campus. Cal Poly is one of the nationโ€™s top masters-level public universities and a leader in digital transformation.


The Cal Poly deployment is part of a broader initiative between Federated Wireless and AWS to build, deploy and manage private wireless networks, and accelerate digital transformation for customers across industries. Sold as a managed service to customers in AWS Marketplace, the Federated Wireless Private Wireless Network for Your Enterprise offers a turnkey private wireless solution with all the advantages of private wireless combined with rapid deployment, skilled resources, assured service management, and support. The combination of edge services on AWS, and Federated Wireless managed services enables a private wireless network to be deployed and operational in a matter of weeks.

The Cal Poly Digital Transformation Hub (DxHub), powered by AWS,ย is aย Cloud Innovation Center that solves real-world challenges, further accelerating the adoption of technologies such as cloud, edge, and Internet of Things (IoT) for public sector organizations. With the launch of Cal Polyโ€™s 5G innovation network, the university can leverage the cloud-based advantages of shared-spectrum-enabled CBRS 5G connectivity to advance cutting-edge projects and research. Faculty and students across disciplines are currently working on a construction management project to pilot the use of a digital twin for the campus. Other research opportunities include smart greenhouses, autonomous farming, and various data-intensive projects.

โ€œCal Poly continues to lead in the development of a digital campus. Weโ€™re driving innovation for smart buildings and smart agriculture by introducing new devices and applications, and now we have a more reliable way to get data from point A to point B. Federated Wireless and AWS are giving us the 5G backbone to make the digital campus a reality,โ€ said Bill Britton, Cal Polyโ€™s vice president for information technology services and chief information officer. โ€œOur work is all about Learn by Doing, ensuring students, faculty, and staff have access to the latest technology to advance research and innovation. Federated Wireless and AWS are enabling us to bring the power and privacy of 5G to our campus faster.โ€

The unique multi-tenancy capabilities of private wireless ensure the solution can partition private network resources for different requirements and user groups. This means the private 5G resources can scale to accommodate projects starting with the DxHub as well as various organizations on campus, including IT services, facilities, and academic research.

Built on AWS Snowcone, an ultra-portable and rugged edge compute, storage, and data transfer device,ย and connected over Federated Wireless shared spectrum deployed on AWS, the 5G private wireless solution is designed to deliver secure, reliable connectivity in highly remote environments where last-mile connectivity has traditionally been the greatest barrier to deploying innovative new applications and devices. Running on AWS allows Cal Poly to deliver cloud-based applications across its expansive and geographically diverse campus locations.

โ€œItโ€™s become very clear that private wireless is a major piece of the puzzle for enterprises to realize the massive potential of IoT and cloud automation,โ€ said Iyad Tarazi, CEO of Federated Wireless. โ€œOur work with AWS is about giving customers the easiest path to get started with private wireless while creating seamless, supported integrations. Weโ€™re proud to streamline this offering for entities that are eager to get started with private wireless and 5G.โ€

Federated Wireless is part of the AWS Independent Software Vendor (ISV) Accelerate Program, a co-sell program for AWS Partners who provide software solutions that run on or integrate with AWS. The program helps drive new business and accelerate sales cycles by connecting the participating ISVs with the AWS Sales organization.

โ€œOur customers want simple, fast, and dedicated wireless connectivity to enable their mission-critical applications,โ€ said Sameer Vuyyuru, head of worldwide business development, telco industry at AWS. โ€œThe combination of AWS with Federated Wirelessโ€™s Private Wireless Network for Your Enterpriseย helps simplify the process to build, deploy and manage private wireless networks, making it easier for more customers to realize the benefits. We are pleased to work with Cal Poly to leverage these benefits to accelerate learning and innovation across its campus.โ€


Recent Content

Connecting the unconnected requires more than just broadband buildout. National digital inclusion strategies focus on affordability, digital skills, devices, and sustainable infrastructure to empower all communities. Learn how federal programs, state initiatives, and public-private partnerships are reshaping broadband access across America.
The fiber, data center, and telecom sectors are evolving rapidly amid rising AI workloads, cloud expansion, edge computing, and new investment models. This article breaks down the key trends โ€” from fiber deployments in rural markets to secondary data center expansions and telecoms shifting to platform-based services, that are reshaping digital infrastructure for a hyperconnected future.
In 2025, data centers are at the forefront of AI innovation, balancing the explosive growth of AI workloads with urgent sustainability goals. This article explores how brownfield and greenfield developments help operators manage demand, support low-latency AI services, and drive toward net-zero carbon targets.
AI promises major gains for telecom operators, but most initiatives stall due to outdated, fragmented inventory systems. Discover why unified, service-aware inventory is the missing link for successful AI in telecomโ€”and how operators can build a smarter, impact-ready foundation for automation with VC4’s Service2Create (S2C) platform.
Legacy broadband networks are struggling to meet todayโ€™s demands. Open architectures โ€” modular, interoperable, and standards-based โ€” are revolutionizing broadband by promoting flexibility, cost-efficiency, and faster innovation. Learn how service providers can leverage open broadband strategies to scale, improve customer experiences, and build resilient, future-proof infrastructures ready for the digital economy.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top