FCC’s Proposed CBRS Changes Face Strong Opposition from 25 Organizations

The FCC’s proposed CBRS changes are facing backlash from 25 organizations, including Amazon, Comcast, and Lockheed Martin, who argue that increased power levels and relaxed emissions limits would harm rural broadband, private networks, and competition. The proposal risks turning CBRS into a high-power cellular band, benefiting major carriers at the expense of small businesses, industrial users, and public access initiatives. As the debate intensifies, the future of CBRS and its diverse ecosystem remains uncertain.
FCC loses control over the US spectrum auctions

FCC’s Proposed Changes to CBRS Face Industry Pushback

The Citizens Broadband Radio Service (CBRS) band has emerged as a critical platform for innovation, fostering a diverse ecosystem of applications ranging from rural broadband to private industrial networks. However, proposed changes to the CBRS framework by the Federal Communications Commission (FCC) are facing significant opposition from 25 organizations, who argue these alterations would fundamentally undermine the purpose, success, and competitive landscape of CBRS.

Why CBRS Is Critical for Innovation and Competition

In a letter addressed to FCC Chairman Brendan Carr, these organizations express serious concerns about proposals to increase power levels for CBRS devices and relax emissions limits. They argue that such changes would transform CBRS into yet another high-power, macro cellular band, abandoning the original vision of a lower-power, small-cell band designed to support broad access and diverse applications. This shift, they contend, would benefit large carriers at the expense of smaller innovators and the diverse use cases CBRS was designed to serve.

Key Industries That Rely on CBRS and May Be Affected

The core issue is the potential disruption to the vibrant CBRS ecosystem. The letter highlights the wide range of use cases already benefiting from CBRS, demonstrating its versatility and impact:

  • Rural Broadband Deployment: CBRS has proven crucial in bridging the digital divide, providing cost-effective broadband access to underserved rural communities. Increased power levels could negatively impact these deployments, potentially disrupting existing services and hindering future expansion.
  • Competitive Mobile Services: CBRS has enabled smaller carriers and new entrants to compete with established mobile operators, fostering competition and driving innovation in the mobile market. The proposed changes could stifle this competition, consolidating power in the hands of larger players.
  • Manufacturing and Industrial Private Networks: Industries are leveraging CBRS to create private networks for automation, robotics, and other critical applications, increasing efficiency and productivity. Changes to the framework could jeopardize these deployments and hinder the growth of Industry 4.0.
  • Transportation and Logistics Connectivity: Airports, shipping terminals, and other transportation hubs rely on CBRS for seamless connectivity, supporting everything from baggage handling to passenger services. The proposed changes could disrupt these critical operations.
  • School and Library Access: CBRS has been instrumental in providing internet access to schools and libraries, particularly in underserved communities. The potential disruption to these services would have a significant impact on educational equity.

The Potential Impact of the FCC’s CBRS Proposal


The proposed changes, the letter contends, would jeopardize these existing deployments and stifle future innovation. Furthermore, they would render much of the substantial work already invested in CBRS development – a decade-long collaboration between the FCC, federal agencies, and industry – effectively wasted. This includes ongoing efforts to expand the unencumbered portion of the spectrum band, a critical process involving the NTIA, the U.S. Navy, and the FCC. This collaborative effort ensures both commercial viability and national security requirements are met.

Beyond the technical concerns, the letter raises concerns about the potential for these changes to create an uneven playing field and stifle competition. They argue that the ultimate result could be a return to reliance on “off-the-shelf managed solutions offered by the largest carriers,” limiting the ability of smaller players to innovate and compete. This implies a potential power grab by larger telecommunications companies, potentially at the expense of smaller businesses, organizations, and the broader public. The letter suggests the changes would undermine the FCC’s bipartisan vision for CBRS as a lower-power, small-cell band that promotes competition and broad access.

A Coalition of Opposition: Who Is Fighting the CBRS Changes?

The signatories of the letter represent a diverse cross-section of stakeholders, demonstrating the widespread concern about the potential negative impacts of the proposed changes:

  • Tech giants: Amazon and Hewlett Packard Enterprise
  • Cable and internet providers: Charter, Comcast, and Cox
  • Public access organizations: American Library Association and the Schools, Health & Libraries Broadband (SHLB) Coalition
  • Industrial players: Deere & Company and Lockheed Martin
  • Wireless industry associations: WISPA

What’s Next for CBRS? The Future of Wireless Innovation at Risk

This broad coalition underscores the significant opposition to the proposed changes. They are urging the FCC to reconsider these proposals and protect the CBRS framework, ensuring its continued role in driving innovation, expanding access to critical connectivity, and promoting competition in the telecommunications market. The future of CBRS, and the diverse ecosystem it supports, hangs in the balance. The FCC’s decision will have long-lasting implications for the future of connectivity in the United States.


Recent Content

Indoor 5G enables high-speed, low-latency connectivity in enclosed environments like offices, hospitals, and airports, supporting mission-critical applications and smart building operations. The market is driven by technological advancements in small cells, distributed antenna systems, and a mix of mmWave and Sub-6 GHz bands. Asia-Pacific leads in adoption due to smart city initiatives and government support. Picocells and antennas are key components, with growing demand in emerging economies fueled by subsidies and infrastructure upgrades. Recent developments include partnerships and acquisitions aimed at strengthening indoor 5G capabilities.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
The fiber, data center, and telecom sectors are evolving rapidly amid rising AI workloads, cloud expansion, edge computing, and new investment models. This article breaks down the key trends — from fiber deployments in rural markets to secondary data center expansions and telecoms shifting to platform-based services, that are reshaping digital infrastructure for a hyperconnected future.
Batelco by Beyon and Nokia are partnering to launch Bahrain’s first private 5G network at Aluminum Bahrain (Alba). The network will drive smart manufacturing through real-time monitoring, automation, and AI-driven analytics—paving the way for Alba’s digital transformation and advancing Bahrain’s Industry 4.0 strategy.
Verizon posted better-than-expected Q1 2025 earnings, with revenue and profits rising. But a record loss of 289,000 postpaid phone subscribers sent the stock down, as investors focused more on churn than cash flow. While prepaid gains and stable guidance offered some optimism, analysts remain cautious about Verizon’s subscriber strategy and pricing pressure.
Airtel has acquired 400 MHz of 26 GHz mmWave spectrum from Adani Data Networks, a move that strengthens its high-speed 5G offerings in urban and enterprise zones. The deal enhances Airtel’s ability to scale fixed wireless access, industrial 5G networks, and high-bandwidth consumer services. With India’s spectrum demand surging, this acquisition underscores the critical role of efficient spectrum use and signals a new phase of telecom consolidation.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top