
AT&T 5G and Edge – Solving real customer problems where they work
This article covers AT&T edge offerings- ANE and MEC with detailed use case scenarios across industry verticals and key partnerships.
As we move towards a society with ever-increasing connectivity and more data generated by things & people, organizations strive to find new ways to process, store and act on this acquired data. One of the essential elements of this ecosystem is cloud or on-premise networks, where most of the workload of any application is executed. One of the main reasons for the poor performance of any application is linked with the time taken by data packets moving back and forth between the user equipment and the compute area. From this point of view, the most significant difference in the experience of any application is created by latency. It is essential to define what we refer to when we say latency. Latency is a measurement of how much time it takes for a data packet to move from its point of origin to its destination point.
The traditional computing paradigms adopted by most of the public cloud computing are mostly centralized computing models. Linearly expanded cloud computing services cannot efficiently handle the massive data and computing tasks generated by exponentially growing edge devices. It faces problems such as real-time, accumulation, and bandwidth occupation. Edge computing can also fulfill this need by distributing workloads closer to digital interactions, allowing organizations to enhance customer experiences and harness growing data volumes for actionable insights. The increasing demand for edge computing has resulted in many new solutions from service providers.
However, these solutions often focus on a single component rather than the integrated technologies needed for edge computing. The value of edge computing comes from the data and technologies that adapt to evolving needs. Therefore, to meet the needs of real-time operation, low latency requirements, and high quality of service (QoS) scenarios, edge computing emerged as an application paradigm of the IoT.
Edge computing relocates critical data processing functions from the center of a network to the edge to a place closer to where data is generated and pushed to end-users. While there are many reasons why this architecture makes sense for specific industries, the most apparent advantage of edge computing is its ability to combat latency. Effectively troubleshooting high latency can often mean the difference between losing customers and providing high-speed, responsive services that meet their needs.
In the new distributed computing paradigm, edge computing facilitates computing and data to be stored and computed closer to edge devices and edge cloud. Hence, edge computing helps change the response time of computing tasks, significantly reducing the pressure on network bandwidth and cloud or on-premise locations and improving service quality for users. Due to its superior performance in delay-sensitive applications, edge computing has become a crucial enabling technology in 5G.
An algorithm that can help offload and redistribute jobs between edge cloud and cloud center can create tremendous value in this job execution. This algorithm can execute similar functionality as what PageRank has done for Google search. The PageRank algorithm measures the importance of each node within the graph based on the number of incoming relationships and the importance of the corresponding source nodes. The underlying assumption, roughly speaking, is that a page is only as important as the pages that link to it.
The PageRank algorithm measures the importance of each node within the graph based on the number of incoming relationships and the importance of the corresponding source nodes. The underlying assumption, roughly speaking, is that a page is only as important as the pages that link to it. The growth of enterprise use cases is inevitably linked with the success of methods and techniques in the edge computing ecosystem. At one end, public cloud companies like AWS and GCP are slowly expanding their edge compute network through partnerships with telecom service providers.
Companies like 5GVector are building such algorithms which can help enterprises to distribute application workloads. Similarly, another innovative company in the Asia region is Nife. Nife is developing an application distribution platform that allows developers to seamlessly deploy applications near end-users directly via the Nife platform or any cloud service provider. Nife executes these applications close to end-users through a mesh of globally connected servers.
The ecosystem of Telco edge cloud is developing fast with various initiatives and collaborations announced by key players in the last 12 months in Asia. This development includes SK Telecom’s recent partnerships with VMware and Dell to offer edge computing in private 5G networking solutions. Singtel is leading the region in telco edge computing with its recent partnership with Microsoft to launch 5G MEC and its work with Ericsson to leverage MEC in its trial 5G SA network. Singtel and Globe (Philippines) are also part of the APAC-focused MEC Task Force launched in January. Other telcos are also collaborating with technology vendors and enterprises to explore and develop enterprise 5G solutions.
The success of such an ecosystem and partnerships will depend on the adoption of their platforms by end-users. Hence, for end-users, enterprises should include edge computing in their ICT roadmap and be more open to collaborating with service providers to explore and co-create new solutions.
Read for FREE
In planned editions of 5G Magazines
In planned editions of 5G Magazines
This article covers AT&T edge offerings- ANE and MEC with detailed use case scenarios across industry verticals and key partnerships.
This article covers multi-access edge computing, related testing challenges, Keysight’s KORA (Keysight Open RAN Architect) Portfolio, and the process of transitioning from Lab to Live production environment.
This article covers edge computing, edge-native applications, edge infrastructure clouds, edge platforms, edge analytics, edge artificial intelligence, cloud-native edge computing, and serverless edge computing, in addition to 5G and Edge Computing combination.
An Interview with Hitentra Sonny Soni – SVP, Head of sales and marketing at Kaloom and Amar Kapadia – CEO and Co-founder at Aarna Networks. This interview focuses on 5G, edge computing, and network slicing – with related use cases, benefits, technical readiness, the joint solution from Aarna Networks and Kaloom, and more.
This article covers the edge promises and security needs, complexities in edge application architecture, security challenges in edge application and the way forward in securing 5G+ edge applications.
Application Infrastructure for Multi-Cloud and Edge Computing covers perspective on 5G and edge computing, the challenges for edge computing, how to build the application environment, what options are available with open source, solutions from cloud providers, and more.
This article discusses in detail the business needs, current challenges, and the algorithms that can help enterprises distribute application workloads.
5G & Edge Applications are scaling with infrastructure build-out as we can see with the rise of the private 5G Networks across industry verticals such as Industry 4.0, Healthcare, Transportation driving road safety, and more.
The entry of cloud computing companies is accelerating the convergence of private networks, local network intelligence, computing services, and MEC that will bolster the adoption of enterprise applications at the edge.
What is the current state of edge computing in Asia? What are the challenges? What are the solutions? Get and in-depth the perspective.
In planned editions of 5G Magazines
Vodafone and Bayer deployed private 5G network in a greenhouse in Germany to gain new knowledge about plant health quickly and make industry and agriculture even more sustainable with automated processes and real-time processing of large amounts of data.
BBC R&D tested 5G standalone non-public networks to provide live pictures of 2022 Commonwealth Games from the center of Birmingham. British Telecom (BT) provided the network and backhaul and Vislink subsidiary Mobile Viewpoint provided the technology that encodes and manages the video stream over the networks.
Kajeet Smart Private 5G™ Platform and Samsung’s latest 5G RAN innovations to power smart cities, school campuses, utility grids, & factories. The education sector will be the first area of focus for the Kajeet and Samsung collaboration.
The 5G in Smart Manufacturing report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G for smart healthcare report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G in energy and utility report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
Gain access to our annual 5G assurance survey that gathers together 100 qualified responses from operators already deploying 5G worldwide.