Samsung secures NTN modem technology for direct communication between smartphones and satellites

Samsung Electronic announced that it has secured standardized 5G non-terrestrial networks (NTN) modem technology for direct communication between smartphones and satellites, especially in remote areas. Samsung plans to integrate this technology into the companyโ€™s Exynos modem solutions, accelerating the commercialization of 5G satellite communications and paving the way for the 6G-driven Internet of Everything (IoE) era.
Samsung secures NTN modem technology for direct communication between smartphones and satellites

Samsung Electronics, a world leader in advanced semiconductor technology, announced that it has secured standardized 5G non-terrestrial networks (NTN) modem technology for direct communication between smartphones and satellites, especially in remote areas. Samsung plans to integrate this technology into the companyโ€™s Exynos modem solutions, accelerating the commercialization of 5G satellite communications and paving the way for the 6G-driven Internet of Everything (IoE) era.

 


Image Credit: Samsung

โ€œThis milestone builds on our rich legacy in wireless communications technologies, following the introduction of the industryโ€™s first commercial 4G LTE modem in 2009 and the industryโ€™s first 5G modem in 2018,โ€ said Min Goo Kim, Executive Vice President of CP (Communication Processor) Development at Samsung Electronics. โ€œSamsung aims to take the lead in advancing hybrid terrestrial-NTN communications ecosystems around the world in preparation for the arrival of 6G.โ€

NTN is a communications technology that uses satellites and other non-terrestrial vehicles to bring connectivity to regions that were previously unreachable by terrestrial networks, whether over mountains, across deserts or in the middle of the ocean. It will also be critical in assuring operability in disaster areas and powering future urban air mobility (UAM) such as unmanned aircraft and flying cars.

 

Image Credit: Samsung

By meeting the latest 5G NTN standards defined by the 3rd Generation Partnership Project (3GPP Release 17), Samsungโ€™s NTN technology will help ensure interoperability and scalability among services offered by global telecom carriers, mobile device makers and chip companies.

For highly reliable NTN communication with low Earth orbit (LEO) satellites, Samsung has developed and simulated 5G NTN standard-based satellite technology using its Exynos Modem 5300 reference platform to accurately predict satellite locations and minimize frequency offsets caused by the Doppler shift. Based on this technology, Samsungโ€™s future Exynos modems will support two-way text messaging as well as high-definition image and video sharing.

Additionally, Samsung plans to secure a standardized NB-IoT NTN technology for use in its next-generation modem platforms. With integrated satellite connectivity, Samsungโ€™s NB-IoT solutions will eliminate the need for a separate high-power wireless antenna chip inside smartphones, providing mobile device makers with much greater design flexibility.


Recent Content

ย Virgin Media O2 and Daisy Group have joined forces to form a ยฃ1.4B B2B telecom and IT services powerhouse, targeting UK enterprises with an integrated offering that includes private 5G, cloud, AI, and cybersecurity solutions. With Virgin Media O2 holding a 70% stake and Daisy 30%, the new entity aims to accelerate enterprise digital transformation, drive operational synergies, and compete against both traditional telcos and cloud-first players in a fast-evolving market.
OpenAIโ€™s Stargate projectโ€”a $500B plan to build global AI infrastructureโ€”is facing delays in the U.S. due to rising tariffs and economic uncertainty. While the first phase in Texas slows, OpenAI is shifting focus internationally with โ€œOpenAI for Countries,โ€ a new initiative to co-build sovereign AI data centers worldwide. Backed by Oracle and SoftBank, Stargate is designed to support massive AI workloads and reshape global compute power distribution.
This article breaks down the core distinctions between Quasi-Earth fixed beams and Earth-moving beams in LEO/MEO satellite networks. It explores their application in both transparent and regenerative NTN architectures, the dynamic association of beams to ground cells, TAC list management, and the implications for UE mobility and network signaling.
Indoor 5G enables high-speed, low-latency connectivity in enclosed environments like offices, hospitals, and airports, supporting mission-critical applications and smart building operations. The market is driven by technological advancements in small cells, distributed antenna systems, and a mix of mmWave and Sub-6 GHz bands. Asia-Pacific leads in adoption due to smart city initiatives and government support. Picocells and antennas are key components, with growing demand in emerging economies fueled by subsidies and infrastructure upgrades. Recent developments include partnerships and acquisitions aimed at strengthening indoor 5G capabilities.
Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425โ€“7.125 GHz) for mobile use, citing the spectrumโ€™s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europeโ€™s digital leadership and hinder next-generation connectivity infrastructure.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top