Private Network Check Readiness - TeckNexus Solutions

5G NR Transparent NTN: Deployment Aspect and Challenges

This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring the potential and complexities in achieving seamless satellite-based mobile communication.
5G NR Transparent NTN: Deployment Aspect and Challenges
Image Credit: Radisys

Introduction: Evolution of NTNs and 5G Standards

In my previous blog, I explored the evolution of non-terrestrial networks (NTNs) and how 3GPP standards are transforming satellite communications. Traditional proprietary satellite networks are being replaced by flexible NTNs, seamlessly integrating with terrestrial systems, and offering telecom operators the ability to extend their reach and deliver new services, particularly in underserved areas. This shift opens opportunities for enhanced mobile broadband, IoT services, and global connectivity, signaling a new era in satellite-based telecom.

Understanding 5G NR Transparent NTN: An Overview


Building on this foundation, in this blog, we turn our focus to a specific type of NTN architectureโ€”5G NR Transparent NTN. This deployment, often referred to as “bent-pipe” architecture, presents both opportunities and challenges in leveraging ground-based gNodeB infrastructure while utilizing satellite connectivity for global reach.

Transparent payload deployment has gNodeB RU, DU and CU on the ground, often disaggregated and containerized. Typical deployments include the split 6 or ORAN 7.2x split with the RU collocated with the Satellite Gateway. Existing SATCOM operators may prefer to leverage their existing infrastructure for flexibly deploying disaggregated gNodeB. 5G Core Network, deployed on a Central Cloud and covering multiple Regulatory Regions or group of countries, with User Plane (UPF) being distributed for local internet breakout. DU/RU maybe collocated with the Gateways or if hosted in a regional cloud, or located hundreds ofย  kilometers away, thereby requiring synchronized communication over SCF nFAPI. Every Gateway supports multiple feeder links, each to a separate satellite.ย 

5G NR Transparent NTN: Deployment Aspect and Challenges
Image Credit: Radisys | Transparent NTN Deployment

Satellite Constellations in Transparent NTN: LEO and MEO

The number of satellites in a LEO/MEO (or Non-GEO / NGSO) constellation depends on altitude and the satellite power capacity. For example, a LEO constellation at an altitude of 1200 Km would typically consist of 300-500 satellites across multiple orbits for global coverage. The geographical coverage span of an NGSO satellite varies with time such that a satellite span may be serving multiple countries simultaneously. A satellite would typically be connected to the ground via a single feeder link for most duration and use a secondary feeder link when switching the feeder link seamlessly.

Satellites supporting transparent NTN technology support a beam control function on the payload. Depending on the steering capabilities, the satellites may support Fixed-Earth beams (GEO), Quasi -Earth Fixed or Moving beams (LEO/MEO). Quasi-Earth fixed beam satellites using their beam steering capability ensure that the coverage span of a geographical region by one of its constituent satellite beams remains the same for the duration the satellite is visible at geo-region. Moving earth beams on the other hand have a time-varying geographical coverage and sweep across the ground as the satellite moves.ย 

NTN Control Function (NCF) and Dynamic Satellite Coverage

The NTN Control Function (NCF), a logical entity identified by 3GPP and realized by entities such as Satellite fleet management & operations, in coordination with onboard payload control systems maintains a mapping of dynamically changing satellite coverage footprint and connectivity with satellite gateways. It not only provides the geospatial satellite parameters carried in SIB-19 broadcast message and its dynamic updates but also provides triggers to gNodeB for service and feeder link switchovers.

Key Challenges in 5G NR Transparent NTN Deployment

Deploying Transparent NTN architecture is not without its obstacles. While the architecture offers flexibility and global coverage, it also introduces several technical complexities that must be addressed to ensure reliable and efficient operation. These challenges arise primarily from the dynamic nature of satellite movement, the variability in geographical coverage, and the coordination required for maintaining seamless connectivity. Below are the key challenges that must be carefully considered:

Associativity of a Geographical cell to a DU Cell instance

Fixed/Quasi earth fixed beams allow a static association of a geographical region (cell) to a respective DU instance. The nature of moving earth beams leads to a fluid definition of a cell in terms of constituent TACs as well as the need for stationary UEs to be in a continued state of implied mobility.

Mobility Procedures and Link Switchovers in NGSO Constellations

Service/Feeder Link switchovers in NGSO constellations generate significant mobility signaling load every few minutes. In addition, these procedures require a well-timed coordination to ensure successful operation.

Interference Mitigation in Overlapping Satellite Beams

Interference from overlapping beams from the same or different satellites simultaneously illuminating a geographical region using the same ARFCN/frequency band needs to be managed using spatial & temporal frequency carrier separation.

Addressing Latency in Transparent NTN Deployments

Transparent NTN deployments introduce large and varying latency. This presents a significant challenge for semi-persistent transmission applications like voice calls. Large delays also reduce the efficacy of measurement-based control for link adaptation and power control mechanisms. The path loss associated with these delays combined with device power constraints restricts direct-to-device communication for low throughput use cases.

The deployment of 5G NR Transparent NTN architecture presents a unique blend of opportunities and challenges. As described, this bent-pipe approach leverages ground-based gNodeB components, split into RU, DU, and CU, while extending coverage through NGSO satellite constellations. However, its success hinges on overcoming key challenges such as managing moving beams, mitigating interference, and addressing latency issues that impact seamless communication.

Future Prospects of 5G NR Transparent NTN in Satellite-Based Connectivity

As NTNs continue to evolve, addressing these challenges will be crucial for unlocking the full potential of satellite-based mobile connectivity. With advancements in NTN technology and the ability to integrate these systems with terrestrial networks, the future holds promising opportunities for global, ubiquitous mobile services. These developments underscore the transformative role of NTNs in reshaping the telecom landscape, driving innovation, and bridging the digital divide.

 


 

Explore More from the Satellite & NTN Blog Series

Continue your deep dive into the evolving world of Non-Terrestrial Networks (NTN) with our dedicated Satellite & NTN series, sponsored by Radisys:

Strengthen Your NTN & Satellite Strategy

  • Gain practical insights on how NTN and satellite connectivity expand IoT, enterprise, and rural broadband reach.
  • Align your roadmap with the latest 3GPP NTN standards, deployment best practices, and emerging multi-orbit investment trends.
  • Access real-world use cases, technical deep dives, and ecosystem partnerships shaping the NTN era.

Access More Radisys Content – Here

Discover More Satellite & NTN Insights – Here


Recent Content

Beijing’s first World Humanoid Robot Games is more than a spectacle. It is a live systems trial for embodied AI, connectivity, and edge operations at scale. Over three days at the Beijing National Speed Skating Oval, more than 500 humanoid robots from roughly 280 teams representing 16 countries are competing in 26 events that span athletics and applied tasks, from soccer and boxing to medicine sorting and venue cleanup. The games double as a staging ground for 5G-Advanced (5G-A) capabilities designed for uplink-intensive, low-latency, high-reliability robotics traffic. Indoors, a digital system with 300 MHz of spectrum delivers multi-Gbps peaks and sustains uplink above 100 Mbps.
More than $14 billion has been invested across the CBRS stacklicenses, RAN, devices, infrastructure, sensors, and software. Over 420,000 CBRS radio nodes (CBSDs) are in service. The device ecosystem is broad: Apple and Samsung ship n48-capable handsets; industrial and FWA suppliers support n48 CPEs and routers; Ericsson, Nokia, Samsung, JMA Wireless and others provide radio and DAS. This is not a pilot; it is production infrastructure. Refarming would force replacement or retuning of hundreds of thousands of base stations and millions of end devices, plus upgrades to SAS integrations and enterprise control planes.
OneLayer is expanding into Latin America to address growing demand for private 5G and LTE security solutions. With successful deployments in mining and utilities, the company brings its expertise in Zero Trust, network orchestration, and cellular device visibility to regional markets like Brazil and Chile.
Lufthansa Industry Solutions and Ericsson are tackling logistics bottlenecks with private 5G. At the LAX warehouse, they replaced unreliable Wi-Fi with just two private 5G radios, reducing scanning delays by 97% and eliminating paper logs. With edge computing and AI-powered inspections, their scalable solution is setting a new standard for warehouse automation and logistics connectivity.
South Korea’s government and its three national carriers are aligning fresh capital to speed AI and semiconductor competitiveness and to anchor a private-led innovation flywheel. SK Telecom, KT, and LG Uplus will seed a new pool exceeding 300 billion won (about $219 million) via the Korea IT Fund (KIF) to back core and foundational AI, AI transformation (AX), and commercialization in ICT. KIF, formed in 2002 by the carriers, will receive 150 billion won in new commitments, matched by at least an equal amount from external fund managers. The platforms lifespan has been extended to 2040 to sustain long-cycle bets.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025