Private Network Check Readiness - TeckNexus Solutions

Private 5G in Healthcare: Hanyang University Hospital Leads the Way

Hanyang University Hospital in Guri, South Korea, has deployed an advanced private 5G network from HFR Mobile, revolutionizing healthcare operations. The network supports AI-powered patient monitoring, real-time infusion tracking, and secure data communication. This milestone showcases private 5G's potential in addressing critical safety and efficiency challenges while paving the way for future innovations like robotic surgeries and IoT-based predictive healthcare.
Private 5G in Healthcare: Hanyang University Hospital Leads the Way
Image Credit: Hanyang University Hospital

Hanyang University Hospital in Guri, South Korea, has deployed an advanced Private 5G network from HFR Mobile. This marks a milestone in smart healthcare by leveraging private networks to address critical safety and operational challenges. The solution encompasses a full-fledged private 5G infrastructure, including a core network, service management platform, centralized (CU) and distributed units (DU), and radio units. By integrating cutting-edge technologies like AI and real-time monitoring, the deployment sets a new benchmark for healthcare operations.

Key Benefits of Private 5G at Hanyang University Hospital

  1. AI-Powered Patient Monitoring:
    The private 5G network supports AI-driven CCTV systems that monitor emergency rooms and waiting areas. These systems detect fall incidents and potential hazards in real time, enabling medical staff to respond immediately. The ultra-low latency of private 5G ensures alerts are delivered without delays, improving response times and potentially preventing accidents.
  2. Real-Time Infusion Monitoring:
    The solution incorporates bedside monitoring of intravenous (IV) therapy. It tracks fluid flow rates, delivery volumes, and statuses in real time, enabling clinicians to identify irregularities immediately. This enhances patient safety, reduces errors, and allows healthcare providers to focus on other critical tasks.
  3. Seamless Connectivity for Medical Applications:
    Private 5G’s high-speed and secure data transmission capabilities support sensitive medical applications. This ensures compliance with data protection regulations while enabling smooth communication across devices, applications, and staff.
  4. Integrated Infrastructure for Advanced Operations:
    The deployment combines centralized and distributed units, a service management platform, and advanced radio components to provide an integrated and scalable network. This infrastructure ensures operational efficiency and reliability, even in the hospital’s demanding environment.

Addressing Critical Safety Concerns in Healthcare


Hospitals face unique challenges, including managing patient safety, ensuring efficient workflows, and safeguarding sensitive medical data. Traditional network systems often fall short in meeting these demands, particularly when rapid response times are critical. Private 5G’s high bandwidth, low latency, and advanced capabilities provide a robust solution to these challenges. For example:

  • Hazard Prevention: AI-driven systems identify risks like falls or patient incidents in emergency rooms and waiting areas, sending instant notifications to staff.
  • Emergency Response: By delivering real-time data, private 5G helps medical teams respond to emergencies faster. This is especially critical in high-pressure environments such as emergency rooms.

Broader Implications for Healthcare

The successful implementation of private 5G at Hanyang University Hospital demonstrates the technology’s potential to transform healthcare. Beyond real-time monitoring, the solution paves the way for future applications such as robotic surgeries, AR-assisted diagnostics, and predictive healthcare powered by IoT.

Global Trends in Private 5G for Smart Healthcare

This deployment aligns with a global trend in healthcare digitalization. Similar projects, such as the installation of a 5G Internet of Things (IoT) solution at The First Affiliated Hospital of Soochow University in China, highlight the growing adoption of private 5G in healthcare. These initiatives are moving healthcare toward more integrated, automated, and data-driven systems.

HFR Mobile: Shaping the Future of Healthcare with Private 5G

HFR Mobile’s role in this deployment showcases its expertise in delivering Private 5G solutions tailored to specific industries. By focusing on healthcare, the company is contributing to safer and more efficient medical environments. HFR Mobile’s broader vision involves connecting private networks to critical services, enabling seamless digital transformation across industries.

Benefits for Hanyang University Hospital

  1. Improved Patient Safety: Real-time hazard detection and infusion monitoring mitigate risks and enhance emergency response.
  2. Streamlined Workflows: Automation of monitoring systems reduces the workload for medical staff, allowing them to prioritize direct patient care.
  3. Enhanced Data Security: Private 5G ensures secure data transmission, safeguarding sensitive patient information.
  4. Future-Ready Infrastructure: The deployment provides a scalable platform for adopting emerging healthcare technologies, such as IoT devices and augmented reality tools.

The Role of Partnerships in Hanyang Hospital’s 5G Success

HFR Mobile’s deployment relied on a collaborative ecosystem of technology partners. This ensured access to state-of-the-art components like advanced AI algorithms, low-latency 5G infrastructure, and secure service management platforms. Such partnerships are key to delivering robust solutions in complex environments like hospitals.

How Hanyang Hospital’s 5G Deployment Sets a New Industry Standard

The success of this deployment sets a precedent for other hospitals and healthcare providers globally. Private 5G networks have the potential to become the backbone of smart healthcare systems, enabling innovations such as predictive analytics, wearable monitoring devices, and real-time health management systems.

The Future of Private 5G in Global Healthcare Systems

The implementation at Hanyang University Hospital is just the beginning. As private networks continue to evolve, hospitals worldwide could leverage similar solutions to create highly efficient, connected, and secure healthcare ecosystems. Future applications may include:

  • Robotics in Surgery: Low-latency networks can support precision surgeries conducted remotely.
  • AR and VR for Training: Augmented reality and virtual reality tools can revolutionize medical training and diagnostics.
  • IoT for Predictive Healthcare: IoT devices connected via private 5G can monitor patient vitals continuously, predicting and preventing health issues.

Hanyang University Hospital’s deployment of a private 5G solution by HFR Mobile highlights the transformative potential of private networks in healthcare. By addressing critical safety and efficiency challenges, the hospital has set a benchmark for integrating cutting-edge technologies in medical environments. As private 5G adoption grows, it will continue to play a pivotal role in shaping the future of healthcare.

This case study serves as a strong endorsement of private 5G networks as a vital enabler for smart healthcare innovations, paving the way for safer and more efficient medical facilities worldwide.


Recent Content

MWC25 Las Vegas is the premier North American event for CIOs and IT leaders, offering real-world insights on 5G, AI, IoT, private networks, and edge computing. With industry leaders from IBM, Qualcomm, T-Mobile, and more, the event focuses on actionable strategies for enterprise transformation.
This article explores the challenges data analysts face due to time-consuming data wrangling, hindering strategic analysis. It highlights how fragmented data, quality issues, and compliance demands contribute to this bottleneck. The solution proposed is AI-powered automation for tasks like data extraction, cleansing, and reporting, freeing analysts. Implementing AI offers benefits such as increased efficiency, improved decision-making, and reduced risk, but requires careful planning. The article concludes that embracing AI while prioritizing data security and privacy is crucial for staying competitive.
Kyndryls’ three-year, $2.25 billion plan signals an aggressive push to anchor AI-led infrastructure modernization in India’s digital economy and to scale delivery across regulated industries. The $2.25 billion commitment, anchored by the Bengaluru AI lab and tied to governance and skilling programs, should accelerate enterprise-grade AI and hybrid modernization across India. Expect more co-created reference architectures, deeper public-sector engagements, and tighter integration with network and cloud partners through 2026. For telecom and large enterprises, this is a timely opportunity to industrialize AI, modernize core platforms, and raise operational resilience provided programs are governed with clear metrics, strong security, and a pragmatic path from pilot to production.
AstraZeneca, Ericsson, Saab, SEB, and Wallenberg Investments have launched Sferical AI to build and operate a sovereign AI supercomputer that anchors Sweden’s next phase of industrial digitization. Sferical AI plans to deploy two NVIDIA DGX Super PODs based on the latest DGX GB300 systems in Linkping. The installation will combine 1,152 tightly interconnected GPUs, designed for fast training and fine-tuning of large, complex models. Sovereign infrastructure addresses data residency, IP protection, and regulatory alignment, while reducing exposure to public cloud capacity swings. For Swedish and European firms navigating GDPR, NIS2, and sector-specific rules like DORA in finance, a trusted, high-performance platform can accelerate AI adoption without compromising compliance.
Apple’s fall software updates introduce admin-grade switches to govern how corporate users access ChatGPT and other external AI services across iPhone, iPad, and Mac. Apple is enabling IT teams to explicitly allow or block the use of an enterprise-grade ChatGPT within Apple Intelligence, with a design that treats OpenAI as one of several possible external providers. Practically, that means admins can set policy to route requests either to Apples own stack or to a sanctioned third-party provider, and disable external routing entirely when required.
India’s AI oversight for telecom is moving from recommendations to implementation, with policy review and technical workstreams running in parallel. The Telecom Regulatory Authority of India has issued recommendations on leveraging artificial intelligence and big data in telecom, including the creation of an independent statutory authority for AI governance. The proposed Artificial Intelligence and Data Authority of India (AIDAI) is envisioned to promote responsible AI development and regulate sectoral use cases. The Ministry of Electronics and Information Technology has initiated projects with research bodies and universities focused on how to ensure and test AI trustworthiness.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025