Enhancing Operational Technology Security in 5G Industrial Environments

This article delves into the significance of security for operational technology in 5G use cases, as it pertains to industrial development, and highlights key considerations for ensuring optimal security measures are in place.
Excellence in Private Network Security

The advent of 5G technology has introduced unparalleled opportunities for innovation and growth in various sectors, including manufacturing, energy, and transportation. Its low latency, high bandwidth, and enhanced capacity enable real-time data exchange and support diverse applications, such as automation, augmented reality, and remote monitoring. However, these opportunities also bring about new security challenges, particularly in the realm of operational technology (OT). As industries increasingly rely on interconnected systems and 5G-enabled use cases, ensuring the security of OT becomes crucial for business continuity and overall success.

OT Security Challenges in 5G Industrial Use Cases

  • Increased Interconnectivity The integration of IT and OT networks in 5G industrial use cases has expanded the potential attack surface for cybercriminals. As a result, the once-isolated OT systems are now more susceptible to cyberattacks, with potential consequences ranging from data breaches to physical damage.
  • Evolving Cyber Threats Cybercriminals are constantly developing new attack vectors, exploiting vulnerabilities in hardware and software, and targeting OT systems to disrupt critical infrastructure. Ransomware, malware, and advanced persistent threats (APTs) pose serious risks to the operational integrity and safety of industrial environments.
  • Supply Chain Risks The global nature of 5G technology supply chains exposes organizations to potential vulnerabilities in hardware, software, and services from third-party providers. As 5G networks increasingly connect to OT systems, ensuring the security of supply chains becomes a vital aspect of overall operational security.

Securing Operational Technology in 5G Industrial Environments

  • Risk Assessment and Management Organizations must prioritize risk assessment and management to identify vulnerabilities, assess potential threats, and develop strategies to mitigate risks. This process should involve mapping out the OT infrastructure, assessing current security measures, and identifying areas requiring improvement.
  • Defense-in-Depth Strategy A layered security approach, known as defense-in-depth, should be implemented to protect OT systems from various cyber threats. This includes multiple layers of security measures, such as network segmentation, intrusion detection systems, firewalls, and access control mechanisms, to provide a comprehensive security solution.
  • Monitoring and Incident Response Continuous monitoring of the OT environment is crucial to detect and respond to threats in real-time. Organizations should establish a security operations center (SOC) to monitor and analyze network traffic, detect anomalies, and initiate swift incident response procedures.
  • Security Awareness and Training Human error remain a significant factor in many cybersecurity incidents. To mitigate this risk, organizations should invest in security awareness training and educate employees on the importance of following security policies and procedures.
  • Collaborative Approach A collaborative approach between industry stakeholders, including equipment manufacturers, network operators, and security solution providers, is essential for the development of standardized security frameworks and best practices that address the unique challenges of OT security in 5G industrial use cases.

Conclusion


The growing adoption of 5G technology in industrial use cases presents both opportunities and challenges for the security of operational technology. By understanding these challenges and implementing robust security measures, organizations can effectively protect their OT systems from potential threats and ensure the successful integration of 5G technology into their operations.


Recent Content

The integration of tariffs and the EU AI Act creates a challenging environment for the advancement of AI and automation. Tariffs, by increasing the cost of essential hardware components, and the EU AI Act, by increasing compliance costs, can significantly raise the barrier to entry for new AI and automation ventures. European companies developing these technologies may face a double disadvantage: higher input costs due to tariffs and higher compliance costs due to the AI Act, making them less competitive globally. This combined pressure could discourage investment in AI and automation within the EU, hindering innovation and slowing adoption rates. The resulting slower adoption could limit the availability of crucial real-world data for training and improving AI algorithms, further impacting progress.
Low-code platforms like VC4’s Service2Create (S2C) are transforming telecom operations by accelerating service delivery, reducing manual tasks, and simplifying integration with legacy systems. Discover how this technology drives digital transformation, improves efficiency, and future-proofs telecom networks.
Nokia, Digita, and CoreGo have partnered to roll out private 5G networks and edge computing solutions at high-traffic event venues. Using Nokia’s Digital Automation Cloud (DAC) and CoreGo’s payment and access tech, the trio delivers real-time data flow, reliable connectivity, and enhanced guest experience across Finland and international locations—serving over 2 million attendees to date.
AI Pulse: Telecom’s Next Frontier is a definitive guide to how AI is reshaping the telecom landscape — strategically, structurally, and commercially. Spanning over 130 pages, this MWC 2025 special edition explores AI’s growing maturity in telecom, offering a comprehensive look at the technologies and trends driving transformation.

Explore strategic AI pillars—from AI Ops and Edge AI to LLMs, AI-as-a-Service, and governance—and learn how telcos are building AI-native architectures and monetization models. Discover insights from 30+ global CxOs, unpacking shifts in leadership thinking around purpose, innovation, and competitive advantage.

The edition also examines connected industries at the intersection of Private 5G, AI, and Satellite—fueling transformation in smart manufacturing, mobility, fintech, ports, sports, and more. From fan engagement to digital finance, from smart cities to the industrial metaverse, this is the roadmap to telecom’s next era—where intelligence is the new infrastructure, and telcos become the enablers of everything connected.
In AI in Telecom: Strategic Themes, Maturity, and the Road Ahead, we explore how AI has shifted from buzzword to backbone for global telecom leaders. From AI-native networks and edge inferencing, to domain-specific LLMs and behavioral cybersecurity, this article maps out the strategic pillars, real-world use cases, and monetization models driving the AI-powered telecom era. Featuring CxO insights from Telefónica, KDDI, MTN, Telstra, and Orange, it captures the voice of a sector transforming infrastructure into intelligence.
In The Gateway to a New Future, top global telecom leaders—Marc Murtra (Telefónica), Vicki Brady (Telstra), Sunil Bharti Mittal (Airtel), Biao He (China Mobile), and Benedicte Schilbred Fasmer (Telenor)—share bold visions for reshaping the industry. From digital sovereignty and regulatory reform in Europe, to AI-powered smart cities in China and fintech platforms in Africa, these executives reveal how telecom is evolving into a driving force of global innovation, inclusion, and collaboration. The telco of tomorrow is not just a network—it’s a platform for economic and societal transformation.

Download Magazine

With Subscription
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top