Private 5G in Healthcare: Hanyang University Hospital Leads the Way

Hanyang University Hospital in Guri, South Korea, has deployed an advanced private 5G network from HFR Mobile, revolutionizing healthcare operations. The network supports AI-powered patient monitoring, real-time infusion tracking, and secure data communication. This milestone showcases private 5G's potential in addressing critical safety and efficiency challenges while paving the way for future innovations like robotic surgeries and IoT-based predictive healthcare.
Private 5G in Healthcare: Hanyang University Hospital Leads the Way
Image Credit: Hanyang University Hospital

Hanyang University Hospital in Guri, South Korea, has deployed an advanced Private 5G network from HFR Mobile. This marks a milestone in smart healthcare by leveraging private networks to address critical safety and operational challenges. The solution encompasses a full-fledged private 5G infrastructure, including a core network, service management platform, centralized (CU) and distributed units (DU), and radio units. By integrating cutting-edge technologies like AI and real-time monitoring, the deployment sets a new benchmark for healthcare operations.

Key Benefits of Private 5G at Hanyang University Hospital

  1. AI-Powered Patient Monitoring:
    The private 5G network supports AI-driven CCTV systems that monitor emergency rooms and waiting areas. These systems detect fall incidents and potential hazards in real time, enabling medical staff to respond immediately. The ultra-low latency of private 5G ensures alerts are delivered without delays, improving response times and potentially preventing accidents.
  2. Real-Time Infusion Monitoring:
    The solution incorporates bedside monitoring of intravenous (IV) therapy. It tracks fluid flow rates, delivery volumes, and statuses in real time, enabling clinicians to identify irregularities immediately. This enhances patient safety, reduces errors, and allows healthcare providers to focus on other critical tasks.
  3. Seamless Connectivity for Medical Applications:
    Private 5G’s high-speed and secure data transmission capabilities support sensitive medical applications. This ensures compliance with data protection regulations while enabling smooth communication across devices, applications, and staff.
  4. Integrated Infrastructure for Advanced Operations:
    The deployment combines centralized and distributed units, a service management platform, and advanced radio components to provide an integrated and scalable network. This infrastructure ensures operational efficiency and reliability, even in the hospital’s demanding environment.

Addressing Critical Safety Concerns in Healthcare


Hospitals face unique challenges, including managing patient safety, ensuring efficient workflows, and safeguarding sensitive medical data. Traditional network systems often fall short in meeting these demands, particularly when rapid response times are critical. Private 5G’s high bandwidth, low latency, and advanced capabilities provide a robust solution to these challenges. For example:

  • Hazard Prevention: AI-driven systems identify risks like falls or patient incidents in emergency rooms and waiting areas, sending instant notifications to staff.
  • Emergency Response: By delivering real-time data, private 5G helps medical teams respond to emergencies faster. This is especially critical in high-pressure environments such as emergency rooms.

Broader Implications for Healthcare

The successful implementation of private 5G at Hanyang University Hospital demonstrates the technology’s potential to transform healthcare. Beyond real-time monitoring, the solution paves the way for future applications such as robotic surgeries, AR-assisted diagnostics, and predictive healthcare powered by IoT.

Global Trends in Private 5G for Smart Healthcare

This deployment aligns with a global trend in healthcare digitalization. Similar projects, such as the installation of a 5G Internet of Things (IoT) solution at The First Affiliated Hospital of Soochow University in China, highlight the growing adoption of private 5G in healthcare. These initiatives are moving healthcare toward more integrated, automated, and data-driven systems.

HFR Mobile: Shaping the Future of Healthcare with Private 5G

HFR Mobile’s role in this deployment showcases its expertise in delivering Private 5G solutions tailored to specific industries. By focusing on healthcare, the company is contributing to safer and more efficient medical environments. HFR Mobile’s broader vision involves connecting private networks to critical services, enabling seamless digital transformation across industries.

Benefits for Hanyang University Hospital

  1. Improved Patient Safety: Real-time hazard detection and infusion monitoring mitigate risks and enhance emergency response.
  2. Streamlined Workflows: Automation of monitoring systems reduces the workload for medical staff, allowing them to prioritize direct patient care.
  3. Enhanced Data Security: Private 5G ensures secure data transmission, safeguarding sensitive patient information.
  4. Future-Ready Infrastructure: The deployment provides a scalable platform for adopting emerging healthcare technologies, such as IoT devices and augmented reality tools.

The Role of Partnerships in Hanyang Hospital’s 5G Success

HFR Mobile’s deployment relied on a collaborative ecosystem of technology partners. This ensured access to state-of-the-art components like advanced AI algorithms, low-latency 5G infrastructure, and secure service management platforms. Such partnerships are key to delivering robust solutions in complex environments like hospitals.

How Hanyang Hospital’s 5G Deployment Sets a New Industry Standard

The success of this deployment sets a precedent for other hospitals and healthcare providers globally. Private 5G networks have the potential to become the backbone of smart healthcare systems, enabling innovations such as predictive analytics, wearable monitoring devices, and real-time health management systems.

The Future of Private 5G in Global Healthcare Systems

The implementation at Hanyang University Hospital is just the beginning. As private networks continue to evolve, hospitals worldwide could leverage similar solutions to create highly efficient, connected, and secure healthcare ecosystems. Future applications may include:

  • Robotics in Surgery: Low-latency networks can support precision surgeries conducted remotely.
  • AR and VR for Training: Augmented reality and virtual reality tools can revolutionize medical training and diagnostics.
  • IoT for Predictive Healthcare: IoT devices connected via private 5G can monitor patient vitals continuously, predicting and preventing health issues.

Hanyang University Hospital’s deployment of a private 5G solution by HFR Mobile highlights the transformative potential of private networks in healthcare. By addressing critical safety and efficiency challenges, the hospital has set a benchmark for integrating cutting-edge technologies in medical environments. As private 5G adoption grows, it will continue to play a pivotal role in shaping the future of healthcare.

This case study serves as a strong endorsement of private 5G networks as a vital enabler for smart healthcare innovations, paving the way for safer and more efficient medical facilities worldwide.


Recent Content

Nvidia GTC 2025 introduced AI advancements, including Blackwell Ultra AI chips, agentic AI, and AI Factories. With innovations in robotics, generative AI, and AI-driven cloud computing, Nvidia is shaping the future of AI-powered industries. Discover how these technologies are transforming healthcare, finance, automotive, and enterprise applications.
NVIDIA is redefining data centers with AI factories, purpose-built to manufacture intelligence at scale. Unlike traditional data centers, AI factories process, train, and deploy AI models for real-time insights, automation, and digital transformation. As global investments in AI infrastructure rise, enterprises and governments are prioritizing AI-powered data centers to drive innovation, efficiency, and economic growth.
NVIDIA has launched Halos, a full-stack AI-powered safety system designed to enhance autonomous vehicle (AV) development. By integrating AI models, simulation tools, and compliance frameworks, Halos ensures AV safety from cloud to car. With industry partners like Continental, onsemi, and OMNIVISION, NVIDIA is setting new safety benchmarks for self-driving technology.
General Motors (GM) is strengthening its AI collaboration with NVIDIA to revolutionize manufacturing, vehicle design, and autonomous technology. By leveraging AI-powered digital twins, intelligent robotics, and advanced driver-assistance systems, GM aims to enhance efficiency, safety, and innovation across its operations. This partnership marks a major step toward smarter factories, faster vehicle development, and the future of AI-driven transportation.
NVIDIA is partnering with telecom leaders like T-Mobile, Cisco, and MITRE to develop AI-powered 6G networks, integrating artificial intelligence into next-gen wireless infrastructure. Announced at NVIDIA GTC, this initiative leverages AI-RAN and Open RAN technologies to enhance spectral efficiency, optimize network performance, and enable seamless 6G connectivity.
Verizon Business has introduced the Verizon Business Assistant, an AI-powered tool that helps small businesses automate customer interactions via text messaging. This AI-driven solution enables 24/7 customer support, instant responses, and seamless human handoff when needed. Designed to enhance customer engagement and business efficiency, the AI assistant learns from past interactions, allowing businesses to focus on growth while providing fast and accurate responses to customer inquiries.

Download Magazine

With Subscription
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top

Sponsored by RADCOM

AI-Powered Service Assurance: Are You Ready?

5G, IoT, and cloud networks demand real-time, AI-driven service assurance.
  • How AI, DPUs & GenAI are transforming network operations.
  • Why predictive automation is critical for telecom success.
  • How leading CSPs are reducing costs & optimizing performance with AI.

Don’t get left behind—embrace AI-powered service assurance today!