DoD’s Private 5G Deployment Strategy to Modernize Military Communications

The U.S. Department of Defense has unveiled its strategy for deploying private 5G networks to enhance operational capabilities, connectivity, and security across military installations. This initiative, tied to the DoD's modernization plans, focuses on mission-specific 5G solutions, streamlined acquisitions, and Open RAN innovation.
5G Open RAN in US Defense: From Prototype to Full Deployment

Driving Military Modernization with 5G Technology

The U.S. Department of Defense (DoD) formalized its strategy for deploying private 5G networks across military installations, marking a pivotal step in enhancing operational capabilities, connectivity, and security. This strategy aligns with the DoD’s broader modernization initiatives detailed in the “Fulcrum: Department of Defense Information Technology Advancement Strategy” released in June 2024. The adoption of 5G technology is a cornerstone of the DoD’s efforts to leverage next-generation connectivity for improved mission-critical operations and the overall warfighting capabilities of the Joint Force.

Enhancing Connectivity and Mission Capability with High-Speed Private 5G Networks


Private 5G networks provide high-speed, reliable, and mission-specific connectivity solutions that go beyond the capabilities of commercial 5G networks. While commercial networks will play a significant role in meeting general connectivity needs on military installations, private networks offer bespoke solutions tailored to security, mission demands, and operational uniqueness. This capability is particularly critical for ingesting, processing, and transmitting massive volumes of data—a necessity in maintaining the U.S. military’s information and decision superiority.

Strategic Objectives for Private 5G Deployment

The DoD’s Private 5G Deployment Strategy is built around three strategic objectives designed to maximize the effectiveness and security of 5G networks in military contexts:

  1. Aligning Private 5G Infrastructure with Mission Requirements
    The strategy ensures that private 5G deployments meet specific mission, security, operational environment, and performance criteria unique to each installation. Decision-makers must evaluate the necessity of private 5G solutions based on factors such as security, coverage, and performance to determine if a tailored private network is more appropriate than commercial options. This approach ensures that network infrastructure remains scalable, maintainable, and adaptable to evolving military needs.
  2. Accelerating 5G Acquisition, Development, and Deployment
    The DoD aims to streamline and expedite the acquisition and deployment of private 5G capabilities. Leveraging tools like the forthcoming “5G Acquisition Playbook,” DoD Components will receive essential guidance for integrating commercial 5G technologies into mission systems. This playbook, in combination with the “DoD 5G Reference Architecture,” will serve as a critical resource for deploying and managing 5G systems on or near military installations. These resources will focus on enhancing IT oversight, reducing delivery cycles, and maximizing the effectiveness of deployed systems while maintaining cybersecurity standards.
  3. Expanding the Open RAN Ecosystem
    The DoD plans to promote the use of Open Radio Access Network (Open RAN) solutions where feasible to increase vendor diversity, supply chain security, and operational flexibility. Open RAN’s modular architecture, standardized interfaces, and ability to leverage commodity hardware through software-driven functions will foster innovation and enhance network capabilities. By deploying Open RAN prototypes and integrating RAN Intelligent Controllers (RICs), the DoD seeks to improve network flexibility, spectrum agility, and management efficiency at scale.

Supporting Military Modernization and All-Domain Operations with 5G

The DoD’s push for private 5G networks is driven by the need to modernize military communication networks, overcoming existing constraints related to capacity, scalability, resilience, and interoperability. Enhanced 5G infrastructure will enable seamless data access, greater network capacity, and robust support for diverse mission-critical applications. The DoD aims to work closely with private-sector partners to further explore and test the advantages and vulnerabilities of 5G through shared research, prototype deployments, and industry collaboration.

Core Components of Private 5G Networks for Military Applications

Unlike public 5G networks, private 5G networks serve a defined and approved user base, offering targeted performance, security, and access features tailored to military needs. Private networks may be owned and operated by mobile network operators, third parties, or the DoD itself, depending on specific requirements. By integrating Open RAN solutions, the DoD ensures transparency, component modularity, and increased operational security, all while supporting innovation at the network level.

Implementation and Guidance for Military Departments

The successful implementation of private 5G networks requires a coordinated approach that balances operational needs, cybersecurity considerations, and cost. Military departments are tasked with evaluating business cases, leveraging existing enterprise DoD 5G core networks, and adhering to cybersecurity and supply chain risk management requirements. To further streamline this effort, the DoD will provide additional guidance, including a “5G Reference Architecture” and tailored acquisition frameworks.

Future Steps and Strategic Impacts of DoD’s 5G Deployment

The deployment of private 5G networks is expected to significantly enhance the DoD’s operational capabilities by improving connectivity, enabling data-driven decision-making, and facilitating seamless communication across all domains of military operations. The DoD is committed to maximizing the utility of both commercial and private 5G networks while ensuring the security and resilience of its communications infrastructure. In doing so, the DoD seeks to maintain a technological edge and promote a robust and agile global military communications network.

The full DoD Private 5G Deployment Strategy, detailing these initiatives and guidelines, is available here​.


Recent Content

COAI has endorsed MeitY’s move to address spam and scam communication from OTT apps. While telecom operators follow strict UCC rules, OTT platforms remain loosely regulated. COAI is advocating for uniform cybersecurity standards and clear regulatory roles to ensure user safety, particularly with emerging threats like steganography.
A focus on efficiency and cost-cutting, often driven by “bean counters” and “time and motion” experts, stifles innovation and leads to job losses, mirroring the current AI discourse. Overemphasis on efficiency, like the race to the bottom, can ultimately harms everyone except the initial beneficiaries. For example, distributed energy where building new infrastructure and expanding into new sectors, like solar, generates jobs in manufacturing, installation, and new industries. Instead of solely fearing job displacement, we should prioritize investment in innovation, education, entrepreneurship, and just transition policies to create a future where progress benefits all through job creation. I advocate for strategic investment to build the future, instead of just shrinking the present.
Legacy broadband networks are struggling to meet today’s demands. Open architectures — modular, interoperable, and standards-based — are revolutionizing broadband by promoting flexibility, cost-efficiency, and faster innovation. Learn how service providers can leverage open broadband strategies to scale, improve customer experiences, and build resilient, future-proof infrastructures ready for the digital economy.
Batelco by Beyon and Nokia are partnering to launch Bahrain’s first private 5G network at Aluminum Bahrain (Alba). The network will drive smart manufacturing through real-time monitoring, automation, and AI-driven analytics—paving the way for Alba’s digital transformation and advancing Bahrain’s Industry 4.0 strategy.
AT&T reported strong Q1 2025 earnings with EPS of $0.51 and $30.6B in revenue, boosted by 324K new postpaid wireless subscribers and 181K FWA additions. The telecom giant also expanded its fiber footprint by 600,000 locations and reaffirmed its commitment to broadband growth and copper retirement by 2029.
Verizon posted better-than-expected Q1 2025 earnings, with revenue and profits rising. But a record loss of 289,000 postpaid phone subscribers sent the stock down, as investors focused more on churn than cash flow. While prepaid gains and stable guidance offered some optimism, analysts remain cautious about Verizon’s subscriber strategy and pricing pressure.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top