Merseburg University Launches 5G Campus Network with Deutsche Telekom

Merseburg University of Applied Sciences, in collaboration with Deutsche Telekom, has introduced the region's first 5G campus network. This high-performance, low-latency network supports advanced research in areas like autonomous driving, logistics, and AR. With exclusive access to industrial frequencies and 5G technology, the university is at the forefront of digital innovation in Saxony-Anhalt, driving regional transformation and fostering academic-industry collaboration.
Merseburg University Launches 5G Campus Network with Deutsche Telekom
Image Credit: Merseburg University and Deutsche Telekom

In collaboration with Deutsche Telekom, Merseburg University of Applied Sciencesย has launched the first 5G campus network in the region. This network aims to foster innovation, research, and the development of advanced digital technologies in the region. The project is part of Saxony-Anhalt’s broader investment strategy to boost digital infrastructure and drive regional structural transformation.

Overcoming Digital Infrastructure Challenges in Saxony-Anhalt

The region around Merseburg is undergoing significant economic and industrial changes. To support this transition, state-of-the-art digital infrastructure is necessary. Traditional mobile networks are not equipped to handle the specific demands of modern research institutions and industries. Low latency, high-speed data transmission, and secure communication are vital for innovation in fields like autonomous driving, logistics, and augmented reality (AR).

How Deutsche Telekom’s Private 5G Network Powers Innovation at Merseburg University

Deutsche Telekom, using 5G standalone (SA) technology, provided a custom 5G private network for the university. A total of 44 antennas were installedโ€”32 indoor antennas for the Merseburg Innovation and Technology Center (MITZ) and 12 for the university, along with five outdoor antennas. The system utilizes industrial frequencies in the 3.7 to 3.8 GHz range, reserved exclusively for the university, ensuring secure and reliable service.

Real-World Applications: 5G Drone Demonstration at Merseburg Digital Days

The deployment of the 5G network at Merseburg University is not just theoretical. During the Merseburg Digital Days, attendees witnessed a live demonstration of a 5G-enabled drone operating within the network. This successful field test showed the network’s capacity for real-time, low-latency applications. Additionally, indoor 5G positioning technology was used for the first time in MITZ, enabling real-time location tracking of materials, essential for optimizing production and logistics processes.

Why Merseburg University Chose 5G Standalone for Its Campus Network

Merseburg University opted for Deutsche Telekomโ€™s “Campus-Netz Private” solution, which is built on 5G standalone architecture. This technology offers significant advantages, including ultra-low latency and the ability to process data directly on-site, ensuring high security and performance. Ericsson’s solutions were integral to the network infrastructure, particularly for positioning technology, a first for indoor applications.

Key Advantages of Merseburg University’s Private 5G Network for Research and Industry

The private 5G network at Merseburg University provides many advantages:

  • High security: All data traffic stays within the local network, ensuring data integrity.
  • Maximum performance: The network is optimized for high-speed data and ultra-low latency.
  • Exclusive access: The university and MITZ benefit from industrial-grade frequencies, providing up to 100 MHz of bandwidth for research and commercial applications.

How Merseburgโ€™s 5G Campus Network is Shaping the Future of Regional Innovation

The launch of this network positions Merseburg University as a hub for 5G research and innovation. It enables experiments in autonomous driving, real-time logistics, and even healthcare applications, all of which require the advanced capabilities of 5G technology. Moreover, it encourages collaboration between academia and industry, as local businesses can test and refine 5G applications.

Deutsche Telekomโ€™s Role in Deploying Merseburg Universityโ€™s 5G Network

Deutsche Telekom played a crucial role in the design and implementation of this 5G private network. As a trusted telecom leader, they provided the necessary infrastructure and technological expertise. Their involvement extended from network installation to live demonstrations and ongoing support, ensuring that the network operates at its best.

Ericsson’s Cutting-Edge Positioning Technology Boosts Merseburgโ€™s 5G Capabilities

Ericsson, as a key technology partner, contributed its state-of-the-art positioning solution, which is critical for the efficiency of industrial applications such as warehouse management and production line optimization. Their solution is based on the latest 3GPP standards, ensuring the university has access to cutting-edge technology.

Merseburg Universityโ€™s 5G Campus Network Now Fully Operational

The network is fully operational, with both the university and MITZ already using it for various research projects. The initial phase of deployment is complete, and further optimizations and use cases are expected as part of the university’s “MerInnoCampus” development strategy. The Merseburg Digital Days showcased the networkโ€™s potential and highlighted its impact on regional innovation.

The project started with a Europe-wide tender, and Deutsche Telekom was selected as the winning bidder. The network construction took several months, with the official launch happening during the 2023 Merseburg Digital Days. The 5G network is set to operate over a seven-year period, with ongoing updates and improvements as necessary.

Ministerial Support for Merseburg’s 5G Network and Its Regional Impact

Minister Dr. Lydia Hรผskens, speaking at the launch event, emphasized that 5G will play a pivotal role in driving structural change in the region. She highlighted the network’s potential to attract businesses, improve quality of life, and support research and development. Additionally, Linus Schade, representing Deutsche Telekom, noted that this project builds on the company’s previous 5G successes in Merseburg, including the first-ever 5G phone call on their network.

The 5G campus network at Merseburg University represents a significant step forward for digital innovation in Saxony-Anhalt. By providing a secure and high-performance platform, it lays the foundation for future technological advancements and industry collaboration.


Recent Content

Miller Electric partners with T-Mobile to revolutionize Jacksonville’s public transit using a 5G private network, enhancing the performance and safety of autonomous vehicles in the Ultimate Urban Circulator program. This collaboration highlights how advanced 5G solutions ensure seamless, real-time communication, paving the way for efficient and secure smart city transportation systems.
T-Mobile and NVIDIA are at the forefront of AI-driven 6G innovation, establishing a groundbreaking partnership to integrate artificial intelligence into 6G radio access networks (RAN). Through the AI RAN Innovation Center and NVIDIAโ€™s AI Aerial platform, T-Mobile aims to create smarter, more adaptive networks, generating new revenue streams and enhancing performance across diverse applications. This collaboration marks a pivotal step in telecomโ€™s AI evolution, positioning T-Mobile to lead in future network standardization and innovation through partnerships with industry giants like Ericsson, Nokia, and Microsoft.
Five years since its debut, 5G has delivered transformative benefits to industries, despite its gradual adoption among consumers. This in-depth review covers 5Gโ€™s development journey, its key impacts on manufacturing, logistics, and IoT applications, and regional rollout trends. Explore the real-world use cases where 5G is enhancing productivity and safety, the cybersecurity considerations essential for widespread adoption, and the technologyโ€™s alignment with sustainability goals. With practical insights from 5Gโ€™s early years, this review also explores lessons that will shape the next generation of connectivity.
Hrvatski Telekom and Nokia have launched API pilot projects to accelerate 5G application development in Croatia. Using Nokia’s Network as Code platform, the collaboration provides developers with streamlined access to HT’s 5G network, enabling faster, innovative app creation across industries. This initiative strengthens Nokiaโ€™s API ecosystem, adding partners like Infobip and Elmo to unlock new use cases in real-time communication, teledriving, and beyond, setting a new standard for 5G-powered applications.
Lumen Technologies and AWS join forces to transform network operations with generative AI capabilities. This partnership leverages Lumen’s fiber network and AWSโ€™s advanced cloud technologies to create scalable, AI-powered network solutions. By enabling high-performance connectivity for generative AI applications, Lumen and AWS are set to redefine industries such as healthcare, media, and automotive through autonomous networks that optimize speed, security, and reliability.
Ericssonโ€™s new 5G Advanced software suite empowers communications service providers (CSPs) to achieve high-performance programmable networks with advanced AI-driven automation, service-aware RAN, and intent-based networking. These innovations enable CSPs to optimize connectivity, drive revenue through network monetization, and deliver top-tier user experiences as 5G capabilities continue to evolve.
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top