AMD and Rapt AI Partner to Optimize GPU Utilization for AI Workloads

AMD and Rapt AI are partnering to improve AI workload efficiency across AMD Instinct GPUs, including MI300X and MI350. By integrating Rapt AI's intelligent workload automation tools, the collaboration aims to optimize GPU performance, reduce costs, and streamline AI training and inference deployment. This partnership positions AMD as a stronger competitor to Nvidia in the high-performance AI GPU market while offering businesses better scalability and resource utilization.
Observe.AI Launches VoiceAI for Call Center Automation

Advanced Micro Devices Inc. (AMD) is enhancing the way businesses handle AI workloads through a strategic partnership with Rapt AI Inc. This collaboration focuses on improving the efficiency of AI operations on AMDs Instinct series graphics processing units (GPUs), a move that promises to bolster AI training and inference tasks across various industries.

How Rapt AI Enhances AMD Instinct GPU Performance for AI Workloads


Rapt AI introduces an AI-driven platform that automates workload management on high-performance GPUs. The partnership with AMD is aimed at optimizing GPU performance and scalability, which is essential for deploying AI applications more efficiently and at a reduced cost.

Managing large GPU clusters is a significant challenge for enterprises due to the complexity of AI workloads. Effective resource allocation is essential to avoid performance bottlenecks and ensure seamless operation of AI systems. Rapt AI’s solution intelligently manages and optimizes the use of AMD’s Instinct GPUs, including the MI300X, MI325X, and the upcoming MI350 models. These GPUs are positioned as competitors to Nvidias renowned H100, H200, and “Blackwell” AI accelerators.

Maximizing AI ROI: Lower Costs and Better GPU Usage with Rapt AI

The use of Rapt AIs automation tools allows businesses to maximize the performance of their AMD GPU investments. The software optimizes GPU resource utilization, which reduces the total cost of ownership for AI applications. Additionally, it simplifies the deployment of AI frameworks in both on-premise and cloud environments.

Rapt AI’s software reduces the time needed for testing and configuring different infrastructure setups. It automatically determines the most efficient workload distribution, even across diverse GPU clusters. This capability not only improves inference and training performance but also enhances the scalability of AI deployments, facilitating efficient auto-scaling based on application demands.

Future-Proof AI Infrastructure: Integration of Rapt AI with AMD GPUs

The integration of Rapt AIs software with AMDs Instinct GPUs is designed to provide seamless, immediate enhancements in performance. AMD and Rapt AI are committed to continuing their collaboration to explore further improvements in areas such as GPU scheduling and memory utilization.

Charlie Leeming, CEO of Rapt AI, shared his excitement about the partnership, highlighting the expected improvements in performance, cost-efficiency, and reduced time-to-value for customers utilizing this integrated approach.

The Broader Impact of the AMD and Rapt AI Partnership

This collaboration between AMD and Rapt AI is setting new benchmarks in AI infrastructure management. By optimizing GPU utilization and automating workload management, the partnership effectively addresses the challenges enterprises face in scaling and managing AI applications. This initiative not only promises improved performance and cost savings but also streamlines the deployment and scalability of AI technologies across different sectors.

As AI technology becomes increasingly integrated into business processes, the need for robust, efficient, and cost-effective AI infrastructure becomes more critical. AMDs strategic partnership with Rapt AI underscores the company’s commitment to delivering advanced solutions that meet the evolving needs of modern enterprises in maximizing the potential of AI technologies.

This collaboration will likely influence future trends in GPU utilization and AI application management, positioning AMD and Rapt AI at the forefront of technological advancements in AI infrastructure. As the partnership evolves, it will continue to drive innovations that cater to the dynamic demands of global industries looking to leverage AI for competitive advantage.

The synergy between AMDs hardware expertise and Rapt AIs innovative software solutions paves the way for transformative changes in how AI applications are deployed and managed, ensuring businesses can achieve greater efficiency and better results from their AI initiatives.


Recent Content

Start: March 3, 2025
End: March 6, 2025
Venue: Fira Gran Via, Barcelona
Location: Barcelona
HFR Mobile’s Private 5G Network at Kolon Global’s Merck Bio Center sets a new benchmark for construction safety. With AI-powered tools, real-time monitoring, and biometric tracking, it enhances safety and operational efficiency. This cost-effective solution highlights the transformative potential of next-gen technologies in high-risk environments.
Cloud-native networks are no longer the future—they are the present. Businesses transitioning to cloud-native environments gain agility, faster service deployment, and seamless integration with 5G and AI-driven automation. However, the migration process can be challenging due to legacy infrastructure integration, potential downtime risks, and issues with data visibility. VC4 simplifies this process with a structured, zero-downtime migration strategy, ensuring accurate network inventory and seamless cloud-native adoption. Partner with VC4 to build a telecom network that is ready for the future.
OpenAI and Retro Biosciences have unveiled GPT-4b micro, an AI model designed to engineer proteins for longevity science. This partnership focuses on re-engineering Yamanaka factors, which hold the potential to slow aging, regenerate organs, and add 10 healthy years to human life.
Hanyang University Hospital in Guri, South Korea, has deployed an advanced private 5G network from HFR Mobile, revolutionizing healthcare operations. The network supports AI-powered patient monitoring, real-time infusion tracking, and secure data communication. This milestone showcases private 5G’s potential in addressing critical safety and efficiency challenges while paving the way for future innovations like robotic surgeries and IoT-based predictive healthcare.
BSNL and Echelon Edge have joined forces to install a private 5G SA network at Amlohri Coal Mines, transforming India’s mining sector. The network enables real-time IoT monitoring, AI-powered traffic management, drone inspections, and digital twin integration for safer, more efficient operations. This deployment highlights the transformative potential of 5G in modernizing mining while promoting indigenous technology under India’s “Make in India” initiative.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top