Turkcell and Ericsson showcase 5G network slicing success

Turkcell and Ericsson have unveiled a successful 5G Standalone network slicing proof of concept, paving the way for personalized and efficient connectivity solutions in Türkiye.
Turkcell and Ericsson showcase 5G network slicing success

Turkcell, in partnership with Ericsson, has recently achieved a significant breakthrough in 5G connectivity by successfully completing a 5G Standalone (SA) network slicing proof of concept (PoC). This pioneering demonstration not only highlights the ability to instantaneously create tailored 5G network slices to address the distinct connectivity demands of both enterprises and consumers but also showcases the ability to manage multiple slices on a single 5G device. This development is crucial for introducing flexible charging schemes and underscores the transformative potential of 5G SA networks.


Understanding Network Slicing

At its core, network slicing involves the partitioning of a single physical network into multiple virtual networks, allowing each slice to serve a specific purpose or application. During the PoC, Turkcell and Ericsson exhibited how different user profiles, such as ‘work’ and ‘personal’, could be assigned to separate network slices on a 5G device. This innovation grants developers, businesses, and users unprecedented control over their network capabilities, emphasizing the strategic advantage of adopting 5G SA technology.

Technical Infrastructure and Execution

The trial was executed on a cutting-edge 5G Core testbed located within Turkcell’s Telco Cloud infrastructure. This setup included Ericsson’s versatile dual-mode 5G Core and innovative Dynamic Radio Resource Partitioning for 5G RAN Slicing, alongside the comprehensive Ericsson Radio System suite. Ericsson Orchestrator facilitated crucial automation capabilities, while Ericsson Charging introduced a novel approach to billing based on specific slice characteristics.

Key to the PoC’s success was the use of Ericsson Dynamic Network Slice Selection, which incorporates the User Equipment Route Selection Policy (URSP). This technology enables a singular device to access multiple network slices concurrently, ensuring a seamless separation of services and optimizing traffic management to enhance the user experience.

Advancing Automation for 5G Use Cases

Ericsson Orchestrator is instrumental in automating operations across both virtual and cloud-native network functions (VNFs and CNFs), supporting the orchestration of resources, VNF lifecycle management, and service orchestration. This level of automation is crucial for enabling complex 5G SA applications across both the telecommunications and enterprise sectors.

Turkcell’s Vision for a Nationwide 5G SA Network

This PoC marks a significant milestone in Turkcell’s strategy to deploy a comprehensive, national 5G SA network capable of meeting the evolving needs of both businesses and the general populace in Türkiye. Prof. Dr. Vehbi Çağrı Güngör, Turkcell’s Chief Network Technologies Officer, highlighted the PoC’s role in advancing towards offering innovative 5G services, emphasizing the potential of network slicing to redefine connectivity solutions and enhance service delivery.

The Economic Implications of Network Slicing

Network slicing presents a myriad of commercial opportunities for Communication Service Providers (CSPs), particularly in catering to the enterprise market. According to Ericsson, the revenue potential enabled by network slicing for CSPs is projected to hit USD 45 billion by 2025, indicating a vast field of opportunities in leveraging this technology.

Işıl Yalçın, Vice President and Head of Ericsson Türkiye, reaffirmed Ericsson’s commitment to supporting Turkcell in realizing its 5G ambitions and maximizing the value proposition for both individual and enterprise customers. The ongoing collaboration between Turkcell and Ericsson has already led to several significant advancements in 5G technology, including the deployment of 5G-connected autonomous robots, sensor networks, private 5G networks, and enhanced mobile broadband (eMBB) and fixed wireless access (FWA) through network slicing.


Recent Content

5G is the fastest-growing generation of cellular integration inside vehicles. In this article, Ravi Puvvala (VP of Strategic Accounts & Partnerships in the Connectivity Business Unit at Harman) presents the top 5 trends in 5G Automotive in 2021 and predicts the trends for 2022.
The FCC sold off sections of C-band in two separate auctions this past year, several of the big, nationwide telecom providers jumped at the chance to bolster their frequency portfolios. But questions about C-band and its capabilities still linger. How are telecoms going to deploy C-band? Will it finally deliver true 5G? In this article, Broc Jenkins analysis the 5G C-Band challenges and presents what lies ahead to deliver a true 5G.
Why does “sustainability” matter so much now more than ever? How sustainability can be driven through 5G+ Edge Technologies? How can we leverage 5G+ Edge to lower consumption of resources such as energy, water, minerals, crops and sustain our ecosystem? Read this article by Prasad Rajamohan.
As of December 2021, the 5G network has been commercially deployed by 190 wireless service providers across the world and Open RAN has been deployed/trialed in 48 countries across 30+ countries.
The US airlines group has filed a petition for halting 5G C-Band near the airports. They have requested FCC to delay the planned 5G C-Band rollout by Verizon and AT&T on January 5.
5G C-Band rollout halted by DOT to protect potential interference with airplane radio altimeters on request from FAA and U.S. airlines.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top