
AT&T 5G and Edge – Solving real customer problems where they work
This article covers AT&T edge offerings- ANE and MEC with detailed use case scenarios across industry verticals and key partnerships.
Transformational edge applications require efficient data processing near the source, low latency bandwidth, and highly scalable distributed systems. Smart IoT sensors, 5G+ wireless, AI, Cloud, Microservices, Kubernetes, and MLOps are the key enablers of complex edge solutions. Edge applications such as Autonomous Cars, Integrated Smart Factory, Smart Patient Monitoring, Smart Grid, Precision Farming, Remote Monitoring of Oil & Gas Drilling, promise tremendous value to businesses in terms of cost optimization, revenue growth, and innovation.
Business and IT leaders focus on applications affecting business operations and securing them stays their top priority. The recent trends in sophisticated ransomware attacks trying to control operations have elevated their concerns much higher. It is not uncommon to see topics such as cybersecurity and edge security being discussed at the board level. As a result, security has become the backbone of 5G+ edge applications, while securing them poses a true challenge for software and hardware technologists.
Edge applications are distributed across three application layers: Enterprise Cloud, Core Edge, and Far Edge. The three-layer architecture enables edge applications to run at scale, stable, and secure. The Enterprise Cloud layer consists of master services to handle data store, analytics, AI models, network, security, and application management. Far Edge node services process data received from hundreds of IoT devices in remote locations and perform real-time analytics at the edge. Core Edge acts as a regional application center to combine many far edge services and coordinate actions to be executed.
The edge application is decomposed into loosely coupled microservices and deployed onto Kubernetes clusters. The Security Services manage security requirements for data, network, edge, and application. All the distributed services must be well managed and coordinated to work in synchrony, be fault-tolerant, and be able to run at scale. See 5G Magazine for Figure 1 5G+ Edge application landscape.
While stability, scalability, and security are the key pillars of 5G+ edge business applications, stability may be addressed through efficient DevOps, reliable infrastructures, and high availability systems. Scalability may be addressed by over-sizing the resources or by having spare clusters on hot stand-by. Security on the other hand cannot be substituted by alternate approaches. With multiple application layers, distributed microservices, hardware-software integrations, and processing of sensitive data outside of the IT centers, edge applications open up multiple points of “security vulnerability”.
The following list highlights the key aspects to be considered in securing 5G+ edge applications:
See 5G Magazine, for the table providing indicative representation of security threats and risk levels across the edge application layers. For the overall application efficiency, security functions must be optimized based on the security threats and the assessed risk level across the application layers including the edge devices.
Security must be built from the core and integrated end-to-end across the edge application. Enterprise solutions experts strongly recommend a thorough approach in securing the key elements of edge applications.
Securing IoT Devices: Millions of IoT Sensors from remote locations generate large amounts of sensitive data required for the application. Smart sensors have processing capabilities that must be protected against malware and trojan injections. Advanced edge network attacks can inject fake nodes to cipher messages and take control of assets. Edge devices must be protected from physical tampering, circuit modifications, and isolation. Security defense logics can leverage machine learning models to detect hardware trojans and camouflaged edge nodes. Device manufacturers are offering smart sensors with embedded security and enable capabilities to live update the firmware and security features to address evolving threats.
Securing Network & 5G+ wireless: Edge networks are prone to “routing attacks” at the communication layer affecting the latency and throughput. Distributed denial of services (DDoS) attacks can overwhelm the edge network and make the nodes dysfunction. 5G+ wireless opens up additional security vulnerabilities. Securing a network starts with fundamental definitions of policies and processes to prevent unauthorized access, modifications, and interruptions. Cryptographic protocols such as TLS secure the messages across the network. By analyzing threat patterns in the core and edge network, AI models can be developed to detect and prevent attacks before they can happen. Telcos are investing to enhance the security features in their offering through IMSI encryption, SDN, MG 3GPP, and NFV.
Securing Systems & Software: Systems and software must be protected both at the hardware and operating system level. Edge servers have inbuilt security features to augment the operating system securities. The network gateways must be secured from physical and network access. Data stored in the systems, insights developed through processing the data, AI models, and services must be protected against access and hacking. Application codes and policies must be validated using AI-infused vulnerability checks. Cybersecurity and storage companies are fast developing advanced data encryption and security tools perfected for edge applications.
The modern-day security threats are highly dynamic and unpredictable. Each day, cybercriminals are getting smarter and more sophisticated. The defense strategies must stay one step ahead to effectively counter the constantly evolving threats. Edge applications architecture allows for the distribution of security updates. The Security detection and deterrent services must auto-learn over time and initiate alarm or shutdown triggers to handle breaches such as ransomware that threaten business outages.
In recent years, security threat detection and event management solutions elevated the protection level significantly by using AI techniques. Competitive cybersecurity and cloud vendors are teaming up to combat the ever-increasing threats from malware and ransomware. Innovative techniques should enable continuous learning of threat patterns and automated updates of protection logic should become a standard feature. Quantum safe encryption and quantum-safe networks have promising solutions suited for edge applications.
In the coming years, 5G+ edge applications will accelerate digital transformation, drive topline and bottom-line improvements for businesses around many industries. Security must be incorporated at the application core and integrated across the edge solution. Security services should use modern AI techniques and support dynamic updates to defend the rapidly evolving sophisticated attacks. It is also promising to note that software and hardware vendors are investing heavily to embed security as an integral feature of their offering. Through further innovations using AI and quantum technologies, we can expect a “team of virtual smart edge sentinels” that will ensure total security to business-critical 5G+ edge applications.
Read for FREE
In planned editions of 5G Magazines
In planned editions of 5G Magazines
This article covers AT&T edge offerings- ANE and MEC with detailed use case scenarios across industry verticals and key partnerships.
This article covers multi-access edge computing, related testing challenges, Keysight’s KORA (Keysight Open RAN Architect) Portfolio, and the process of transitioning from Lab to Live production environment.
This article covers edge computing, edge-native applications, edge infrastructure clouds, edge platforms, edge analytics, edge artificial intelligence, cloud-native edge computing, and serverless edge computing, in addition to 5G and Edge Computing combination.
An Interview with Hitentra Sonny Soni – SVP, Head of sales and marketing at Kaloom and Amar Kapadia – CEO and Co-founder at Aarna Networks. This interview focuses on 5G, edge computing, and network slicing – with related use cases, benefits, technical readiness, the joint solution from Aarna Networks and Kaloom, and more.
This article covers the edge promises and security needs, complexities in edge application architecture, security challenges in edge application and the way forward in securing 5G+ edge applications.
Application Infrastructure for Multi-Cloud and Edge Computing covers perspective on 5G and edge computing, the challenges for edge computing, how to build the application environment, what options are available with open source, solutions from cloud providers, and more.
This article discusses in detail the business needs, current challenges, and the algorithms that can help enterprises distribute application workloads.
5G & Edge Applications are scaling with infrastructure build-out as we can see with the rise of the private 5G Networks across industry verticals such as Industry 4.0, Healthcare, Transportation driving road safety, and more.
The entry of cloud computing companies is accelerating the convergence of private networks, local network intelligence, computing services, and MEC that will bolster the adoption of enterprise applications at the edge.
What is the current state of edge computing in Asia? What are the challenges? What are the solutions? Get and in-depth the perspective.
In planned editions of 5G Magazines
Vodafone and Bayer deployed private 5G network in a greenhouse in Germany to gain new knowledge about plant health quickly and make industry and agriculture even more sustainable with automated processes and real-time processing of large amounts of data.
BBC R&D tested 5G standalone non-public networks to provide live pictures of 2022 Commonwealth Games from the center of Birmingham. British Telecom (BT) provided the network and backhaul and Vislink subsidiary Mobile Viewpoint provided the technology that encodes and manages the video stream over the networks.
Kajeet Smart Private 5G™ Platform and Samsung’s latest 5G RAN innovations to power smart cities, school campuses, utility grids, & factories. The education sector will be the first area of focus for the Kajeet and Samsung collaboration.
The 5G in Smart Manufacturing report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G for smart healthcare report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G in energy and utility report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
Gain access to our annual 5G assurance survey that gathers together 100 qualified responses from operators already deploying 5G worldwide.